Search results for "nucl-th"

showing 10 items of 1223 documents

Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory

2014

The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST pi-pi scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for pi-pi…

Chiral symmetryNuclear Theory (nucl-th)High Energy Physics - PhenomenologyCovariant spectator theoryHigh Energy Physics - Phenomenology (hep-ph)Nuclear TheoryHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyQuark-antiquark bound statesFOS: Physical sciences
researchProduct

Neutral-Current Neutrino-Nucleus Scattering off Xe Isotopes

2018

Large liquid xenon detectors aiming for dark matter direct detection will soon become viable tools also for investigating neutrino physics. Information on the effects of nuclear structure in neutrino-nucleus scattering can be important in distinguishing neutrino backgrounds in such detectors. We perform calculations for differential and total cross sections of neutral-current neutrino scattering off the most abundant xenon isotopes. The nuclear structure calculations are made in the nuclear shell model for elastic scattering, and also in the quasiparticle random-phase approximation (QRPA) and microscopic quasiparticle phonon model (MQPM) for both elastic and inelastic scattering. Using suit…

Computer Science::Machine LearningNuclear and High Energy PhysicsArticle SubjectNuclear TheoryPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaDark matterNuclear TheoryFOS: Physical sciencesInelastic scatteringComputer Science::Digital Libraries01 natural sciencesNuclear Theory (nucl-th)Nuclear physicsStatistics::Machine LearningHigh Energy Physics - Phenomenology (hep-ph)neutrino physics0103 physical sciencesIsotopes of xenonsironta010306 general physicsPhysicsElastic scatteringneutrino-nucleus scatteringta114010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyNuclear shell modelneutriinotlcsh:QC1-999High Energy Physics - PhenomenologyComputer Science::Mathematical SoftwareHigh Energy Physics::ExperimentNeutrinolcsh:PhysicsAdvances in High Energy Physics
researchProduct

Magnetic fields in heavy ion collisions: flow and charge transport

2020

At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conduc…

Computer Science::Machine LearningParticle physicsPhysics and Astronomy (miscellaneous)Nuclear Theoryheavy ion collisionsFOS: Physical scienceslcsh:Astrophysicsmagnetic fieldshiukkasfysiikkamagneettikentätComputer Science::Digital Libraries01 natural sciencesElectric charge530Nuclear Theory (nucl-th)Statistics::Machine LearningHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466ddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentEngineering (miscellaneous)Nuclear ExperimentPhysicsCharge conservation010308 nuclear & particles physicsElliptic flowCharge (physics)FermionMagnetic fieldDipoleHigh Energy Physics - PhenomenologyQuantum electrodynamicsComputer Science::Mathematical Softwarelcsh:QC770-798MagnetohydrodynamicsThe European Physical Journal C
researchProduct

Multiply charged metal cluster anions

2000

Formation, stability patterns, and decay channels of silver dianionic and gold trianionic clusters are investigated with Penning-trap experiments and a shell-correction method including shape deformations. The theoretical predictions pertaining to the appearance sizes and electronic shell effects are in remarkable agreement with the experiments. Decay of the multiply anionic clusters occurs predominantly by electron tunneling through a Coulomb barrier, rather than via fission, leading to appearance sizes unrelated to those of multiply cationic clusters.

Condensed Matter - Materials ScienceMaterials scienceNuclear TheoryFissionShell (structure)Cationic polymerizationGeneral Physics and AstronomyCoulomb barrierMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesElectron530MetalNuclear Theory (nucl-th)Chemical physicsvisual_artvisual_art.visual_art_mediumCluster (physics)Physics::Atomic and Molecular ClustersPhysics - Atomic and Molecular ClustersAtomic physicsAtomic and Molecular Clusters (physics.atm-clus)Quantum tunnelling
researchProduct

Hartree-Fock-Bogoliubov theory of polarized Fermi systems

2008

Condensed Fermi systems with an odd number of particles can be described by means of polarizing external fields having a time-odd character. We illustrate how this works for Fermi gases and atomic nuclei treated by density functional theory or Hartree-Fock-Bogoliubov (HFB) theory. We discuss the method based on introducing two chemical potentials for different superfluid components, whereby one may change the particle-number parity of the underlying quasiparticle vacuum. Formally, this method is a variant of non-collective cranking, and the procedure is equivalent to the so-called blocking. We present and exemplify relations between the two-chemical-potential method and the cranking approxi…

Condensed Matter::Quantum GasesPhysicsNuclear TheoryCondensed Matter - SuperconductivityNuclear TheoryHartree–Fock methodFOS: Physical sciencesAtomic and Molecular Physics and OpticsSuperconductivity (cond-mat.supr-con)Nuclear Theory (nucl-th)SuperfluidityQuantum mechanicsQuantum electrodynamicsAtomic nucleusQuasiparticleParity (mathematics)Nuclear theoryFermi Gamma-ray Space TelescopePhysical Review A
researchProduct

Chiral approach to antikaon s- and p-wave interactions in dense nuclear matter

2006

The properties of the antikaons in nuclear matter are investigated from a chiral unitary approach which incorporates the s- and p-waves of the ${\bar K}N$ interaction. To obtain the in-medium meson-baryon amplitudes we include, in a self-consistent way, Pauli blocking effects, meson self-energies corrected by nuclear short-range correlations and baryon binding potentials. We pay special attention to investigating the validity of the on-shell factorization, showing that it cannot be applied in the evaluation of the in-medium corrections to the p-wave amplitudes. In nuclear matter at saturation energy, the $\Lambda$ and $\Sigma$ develop an attractive potential of about -30 MeV, while the $\Si…

Constitució de la matèriaNuclear TheoryNuclear TheoryFOS: Physical sciencesFísicaNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Collisions (Nuclear physics)Col·lisions (Física nuclear)AntikaonsConstitution of matterNuclear ExperimentPropietats de la matèriaProperties of matter
researchProduct

Electromagnetic mass difference of pions at low temperature

1999

We compute low temperature corrections to the electromagnetic mass difference of pions in the chiral limit. The computation is done in a model independent way in the framework of chiral perturbation theory, using the background field method and the hard thermal loop approximation. We also generalize at low temperature the sum rule of Das et al. We find that the mass difference between the charged and neutral pions decreases at low temperature $T$ with respect to the T=0 value. This is so in spite of the fact that charged particles always get a thermal correction to their masses of order $\sim eT$, where $e$ is the gauge coupling constant. Our result can be understood as a consequence of the…

Coupling constantChiral anomalyPhysicsNuclear and High Energy PhysicsChiral perturbation theoryNuclear TheoryThermal quantum field theoryHigh Energy Physics::LatticeFOS: Physical sciencesFísicaNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)PionQuantum mechanicsQuantum electrodynamicsSum rule in quantum mechanicsElectromagnetic massChiral symmetry breaking
researchProduct

Effective-field-theory predictions of the muon-deuteron capture rate

2018

We quantify the theoretical uncertainties of chiral effective-field-theory predictions of the muon-deuteron capture rate. Theoretical error estimates of this low-energy process is important for a reliable interpretation of forthcoming experimental results by the MuSun collaboration. Specifically, we estimate the three dominant sources of uncertainties that impact theoretical calculations of this rate: those resulting from uncertainties in the pool of fit data used to constrain the coupling constants in the nuclear interaction, those due to the truncation of the effective field theory, and those due to uncertainties in the axial radius of the nucleon. For the capture rate into the ${}^1S_0$ …

Coupling constantPhysicsMuonNuclear Theory010308 nuclear & particles physicsFOS: Physical sciencesRadius01 natural sciencesComputational physicsInterpretation (model theory)Nuclear Theory (nucl-th)0103 physical sciencesEffective field theoryTruncation (statistics)Nuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentCommunication channel
researchProduct

Linear response theory in asymmetric nuclear matter for Skyrme functionals including spin-orbit and tensor terms II: Charge Exchange

2019

International audience; We present the formalism of linear response theory both at zero and finite temperature in the case of asymmetric nuclear matter excited by an isospin flip probe. The particle-hole interaction is derived from a general Skyrme functional that includes spin-orbit and tensor terms. Response functions are obtained by solving a closed algebraic system of equations. Spin strength functions are analyzed for typical values of density, momentum transfer, asymmetry, and temperature. We evaluate the role of statistical errors related to the uncertainties of the coupling constants of the Skyrme functional and thus determine the confidence interval of the resulting response functi…

Coupling constantPhysicsNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]010308 nuclear & particles physicsmedia_common.quotation_subjectMomentum transferNuclear TheoryFOS: Physical sciencesNuclear matterSystem of linear equationsNuclear Structure01 natural sciencesAsymmetryNuclear Theory (nucl-th)IsospinExcited state0103 physical sciencesAlgebraic number010306 general physicsMathematical physicsmedia_common
researchProduct

Propagation of uncertainties in the Skyrme energy-density-functional model

2013

Parameters of nuclear energy-density-functionals (EDFs) are always derived by an optimization to experimental data. For the minima of appropriately defined penalty functions, a statistical sensitivity analysis provides the uncertainties of the EDF parameters. To quantify theoretical errors of observables given by the model, we studied the propagation of uncertainties within the UNEDF0 Skyrme-EDF approach. We found that typically the standard errors rapidly increase towards neutron rich nuclei. This can be linked to large uncertainties of the isovector coupling constants of the currently used EDFs.

Coupling constantPhysicsNuclear and High Energy PhysicsIsovectorEnergy density functionalta114Nuclear Theory010308 nuclear & particles physicsStatistical sensitivityNuclear TheoryCharge densityFOS: Physical sciencesObservable01 natural sciencesMaxima and minimaNuclear physicsNuclear Theory (nucl-th)0103 physical sciencesNeutron010306 general physicsComputer Science::Operating Systems
researchProduct