Search results for "nucl-th"

showing 10 items of 1223 documents

Nuclear parton distribution functions with uncertainties in a general mass variable flavor number scheme

2020

In this article we obtain a new set of nuclear parton distribution functions (nuclear PDFs) at next-to-leading order and next-to-next-to-leading order accuracy in perturbative QCD. The common nuclear deep-inelastic scattering (DIS) data analyzed in our study are complemented by the available charged-current neutrino DIS data with nuclear targets and data from Drell-Yan cross-section measurements for several nuclear targets. In addition, the most recent DIS data from the Jefferson Lab CLAS and Hall C experiments are also added to our data sample. For these specific datasets, we consider the impact of target mass corrections and higher twist effects which are expected to be important in the r…

Hessian matrixQuantum chromodynamicsPhysicsParticle physicsNuclear TheoryScatteringNuclear TheoryPerturbative QCDFOS: Physical sciencesPartonHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Experiment (hep-ex)Distribution functionHigh Energy Physics - Phenomenology (hep-ph)symbolsHigh Energy Physics::ExperimentTwistNeutrinoNuclear Experiment
researchProduct

Jet launching from merging magnetized binary neutron stars with realistic equations of state

2021

We perform general relativistic, magnetohydrodynamic (GRMHD) simulations of binary neutron stars in quasi-circular orbit that merge and undergo delayed or prompt collapse to a black hole (BH). The stars are irrotational and modeled using an SLy or an H4 nuclear equation of state. To assess the impact of the initial magnetic field configuration on jet launching, we endow the stars with a purely poloidal magnetic field that is initially unimportant dynamically and is either confined to the stellar interior or extends from the interior into the exterior as in typical pulsars. Consistent with our previous results, we find that only the BH + disk remnants originating from binaries that form hype…

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)AstrofísicaNuclear TheoryAstrophysics::High Energy Astrophysical PhenomenaAstronomiaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics - High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology
researchProduct

FRIB and the GW170817 Kilonova

2018

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)Astrophysics - Solar and Stellar AstrophysicsNuclear TheoryFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

FRIB and the GW170817 Kilonova

2018

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)FOS: Physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Reply to comment on "Searching for Topological Defect Dark Matter via Nongravitational Signatures"

2015

In the comment of Avelino, Sousa and Lobo [arXiv:1506.06028], it is argued, by comparing the kinetic energy of a topological defect with the overall energy of a pulsar, that the origin of the pulsar glitch phenomenon due to the passage of networks of topological defects through pulsars is faced with serious difficulties. Here, we point out that topological defects may trigger pulsar glitches within traditional scenarios, such as vortex unpinning. If the energy transfer from a topological defect exceeds the activation energy for a single pinned vortex, this may lead to an avalanche of unpinning of vortices and consequently a pulsar glitch, and therefore the source of angular momentum and ene…

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear TheoryAtomic Physics (physics.atom-ph)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics - Atomic Physics
researchProduct

Neutrino Structure Functions from GeV to EeV Energies

2023

The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers ($Q^2 \le {\rm few}$ GeV$^2$), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies $E_\nu$ up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to …

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy Physics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyNuclear TheoryParton DistributionsFOS: Physical sciencesDeep Inelastic Scattering or Small-x PhysicsHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Neutrino InteractionsSDG 7 - Affordable and Clean EnergyNuclear Experiment (nucl-ex)Astrophysics - High Energy Astrophysical PhenomenaNuclear Experiment
researchProduct

Horizons: Nuclear Astrophysics in the 2020s and Beyond

2022

Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated.We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field…

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsNuclear TheoryComputingMethodologies_SIMULATIONANDMODELINGastrofysiikkaStarke Wechselwirkung und exotische Kerne – Abteilung BlaumWhite PaperFOS: Physical sciencesReviewtutkimustoimintatutkimuskohteet530Nuclear Theory (nucl-th)Astrophysics - Solar and Stellar AstrophysicsNuclear astrophysicsddc:530Nuclear Experiment (nucl-ex)ydinfysiikkaAstrophysics - High Energy Astrophysical PhenomenaNuclear ExperimenttiedeyhteisötSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers

2015

We explore magnetic-field amplification due to the Kelvin-Helmholtz instability during binary neutron star mergers. By performing high-resolution general relativistic magnetohydrodynamics simulations with a resolution of $17.5$ m for $4$--$5$ ms after the onset of the merger on the Japanese supercomputer "K", we find that an initial magnetic field of moderate maximum strength $10^{13}$ G is amplified at least by a factor of $\approx 10^3$. We also explore the saturation of the magnetic-field energy and our result shows that it is likely to be $\gtrsim 4 \times 10^{50}$ erg, which is $\gtrsim 0.1\%$ of the bulk kinetic energy of the merging binary neutron stars.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear TheoryAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBinary numberGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsKinetic energyInstabilityGeneral Relativity and Quantum CosmologyMagnetic fieldNuclear Theory (nucl-th)Numerical relativityNeutron starAstrophysics - Solar and Stellar AstrophysicsMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaSaturation (magnetic)Solar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Neutron skins of atomic nuclei: per aspera ad astra

2019

The complex nature of the nuclear forces generates a broad range and diversity of observational phenomena. Heavy nuclei, though orders of magnitude less massive than neutron stars, are governed by the same underlying physics, which is enshrined in the nuclear equation of state. Heavy nuclei are expected to develop a neutron-rich skin where many neutrons collect near the surface. Such a skin thickness is strongly sensitive to the poorly-known density dependence of the symmetry energy near saturation density. An accurate and model-independent determination of the neutron-skin thickness of heavy nuclei would provide a significant first constraint on the density dependence of the nuclear symmet…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy Physicsintegumentary systemNuclear Theory010308 nuclear & particles physicsNuclear TheoryFOS: Physical sciencesElectron01 natural sciencesStandard ModelNuclear Theory (nucl-th)Nuclear physicsNeutron starOrders of magnitude (time)0103 physical sciencesAtomic nucleusNuclear astrophysicsNuclear forceNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentAstrophysics - High Energy Astrophysical PhenomenaNuclear Experiment
researchProduct

Influence of pions and hyperons on stellar black hole formation

2013

We present numerical simulations of stellar core-collapse with spherically symmetric, general relativistic hydrodynamics up to black hole formation. Using the CoCoNuT code, with a newly developed grey leakage scheme for the neutrino treatment, we investigate the effects of including pions and \Lambda-hyperons into the equation of state at high densities and temperatures on the black hole formation process. Results show non-negligible differences between the models with reference equation of state without any additional particles and models with the extended ones. For the latter, the maximum masses supported by the proto-neutron star are smaller and the collapse to a black hole occurs earlie…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics[PHYS]Physics [physics]Nuclear and High Energy PhysicsNuclear Theory010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesPrimordial black holeAstrophysics01 natural sciencesNuclear Theory (nucl-th)Black holeBinary black holeRotating black holeIntermediate-mass black hole0103 physical sciencesExtremal black holeStellar black holeQ starAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSPhys. Rev. D., 87, id.043006 (2013)
researchProduct