Search results for "nuclear astrophysic"
showing 10 items of 63 documents
Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 137I and 95Rb
2019
The decays of the β-delayed neutron emitters 137I and 95Rb have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyväskylä allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…
The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s
2018
e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the…
Ion traps in nuclear physics—Recent results and achievements
2016
Abstract Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for post-trap decay spectroscopy experiments. In this review, different ion-trapping techniques and progresses in recent nuclear physics experiments employing low-energy ion traps are discussed. The main focus in this review is on the benefit of recent high accuracy mass measurements to solve some key problems in physics related to nuclear structure, nuclear astrophysics as well as neutrinos. Also, several cases of decay spectroscopy experiments utilizing trap-purifi…
Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP
2019
The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…
A deep study of the high–energy transient sky
2021
This is an open access article. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds t…
Horizons: Nuclear Astrophysics in the 2020s and Beyond
2022
Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated.We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field…
Neutron skins of atomic nuclei: per aspera ad astra
2019
The complex nature of the nuclear forces generates a broad range and diversity of observational phenomena. Heavy nuclei, though orders of magnitude less massive than neutron stars, are governed by the same underlying physics, which is enshrined in the nuclear equation of state. Heavy nuclei are expected to develop a neutron-rich skin where many neutrons collect near the surface. Such a skin thickness is strongly sensitive to the poorly-known density dependence of the symmetry energy near saturation density. An accurate and model-independent determination of the neutron-skin thickness of heavy nuclei would provide a significant first constraint on the density dependence of the nuclear symmet…
Neutron cross section measurements at n_TOF for ADS related estudies
2005
A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main res…
The study of neutron-rich nuclei production in the region of the closed shell N=126 in the multi-nucleon transfer reaction 136Xe+208Pb
2015
Expérience LNL/PRISMA; International audience; The unexplored area of heavy neutron rich nuclei is extremely important for nuclearastrophysics investigations and, in particular, for the understanding of the r-process ofastrophysical nucleogenesis. For the production of heavy neutron rich nuclei located along theneutron closed shell N=126 (probably the last "waiting point" in the r-process of nucleosynthesis)the low-energy multi-nucleon transfer reaction 136Xe+208Pb at Elab=870MeV was explored.Due to the stabilizing eect of the closed neutron shells in both nuclei, N=82 and N=126, andthe rather favorable proton transfer from lead to xenon, the light fragments formed in this processare well b…
Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the $r$-process calculatio…
2018
The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in $r$-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. $^{158}$Nd, $^{160}$Pm, $^{162}$Sm, and $^{164-166}$Gd have been measured for the first time and the precisions for $^{156}$Nd, $^{158}$Pm, $^{162,163}$Eu, $^{163}$Gd, and $^{164}$Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies $S_{2n}$ and neutron pairing energy metrics…