Search results for "numerical"

showing 10 items of 2002 documents

Blow-up collocation solutions of nonlinear homogeneous Volterra integral equations

2011

In this paper, collocation methods are used for detecting blow-up solutions of nonlinear homogeneous Volterra-Hammerstein integral equations. To do this, we introduce the concept of "blow-up collocation solution" and analyze numerically some blow-up time estimates using collocation methods in particular examples where previous results about existence and uniqueness can be applied. Finally, we discuss the relationships between necessary conditions for blow-up of collocation solutions and exact solutions.

CollocationApplied MathematicsMathematical analysisMathematics::Analysis of PDEsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Numerical Analysis (math.NA)Volterra integral equationIntegral equationMathematics::Numerical AnalysisComputational MathematicsNonlinear systemsymbols.namesakeMathematics - Analysis of PDEs45D05 45G10 65R20 34A12HomogeneousComputer Science::Computational Engineering Finance and ScienceCollocation methodFOS: MathematicssymbolsOrthogonal collocationUniquenessMathematics - Numerical AnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Collocation Method for Linear BVPs via B-spline Based Fuzzy Transform

2018

The paper is devoted to an application of a modified F-transform technique based on B-splines in solving linear boundary value problems via the collocation method. An approximate solution is sought as a composite F-transform of a discrete function (which allows the solution to be compactly stored as the values of this discrete function). We demonstrate the effectiveness of the described technique with numerical examples, compare it with other methods and propose theoretical results on the order of approximation when the fuzzy partition is based on cubic B-splines.

CollocationB-spline010103 numerical & computational mathematics02 engineering and technologyFunction (mathematics)01 natural sciencesFuzzy logicCollocation method0202 electrical engineering electronic engineering information engineeringOrder (group theory)Applied mathematics020201 artificial intelligence & image processingBoundary value problem0101 mathematicsApproximate solutionMathematics
researchProduct

A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential …

2002

Abstract In this article, we present a thorough numerical comparison between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of boundary value problems for partial differential equations. A series of test examples was solved with these two schemes, different problems with different type of governing equations, and boundary conditions. Particular emphasis was paid to the ability of these schemes to solve the steady-state convection-diffusion equation at high values of the Peclet number. From the examples tested in this work, it was observed that the system of algebraic equations obtained with the symmetric method was in general simpler to solve …

CollocationPartial differential equationSeries (mathematics)Numerical solutionMathematical analysisPartial differential equationAlgebraic equationComputational MathematicsComputational Theory and MathematicsModeling and SimulationCollocation methodModelling and SimulationRadial basis functionBoundary value problemMesh free techniqueMathematicsNumerical partial differential equationsComputers & Mathematics with Applications
researchProduct

Color and Flow Based Superpixels for 3D Geometry Respecting Meshing

2014

We present an adaptive weight based superpixel segmentation method for the goal of creating mesh representation that respects the 3D scene structure. We propose a new fusion framework which employs both dense optical flow and color images to compute the probability of boundaries. The main contribution of this work is that we introduce a new color and optical flow pixel-wise weighting model that takes into account the non-linear error distribution of the depth estimation from optical flow. Experiments show that our method is better than the other state-of-art methods in terms of smaller error in the final produced mesh.

Color histogramComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOptical flow010103 numerical & computational mathematics02 engineering and technologyImage segmentation01 natural sciencesWeightingDistribution (mathematics)[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]Flow (mathematics)Computer Science::Computer Vision and Pattern Recognition[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligence0101 mathematicsbusinessRepresentation (mathematics)Adaptive opticsComputingMilieux_MISCELLANEOUS
researchProduct

The Bohr Radius of a Banach Space

2009

Following the scalar-valued case considered by Djakow and Ramanujan (A remark on Bohr’s theorem and its generalizations 14:175–178, 2000) we introduce, for each complex Banach space X and each \(1\le p0\). We study the p-Bohr radius of the Lebesgue spaces \(L^q(\mu )\) for different values of p and q. In particular we show that \(r_p(L^q(\mu ))=0\) whenever \(p<2\) and \(dim(L^q(\mu ))\ge 2\) and \(r_p(L^q(\mu ))=1\) whenever \(p\ge 2\) and \(p'\le q\le p\). We also provide some lower estimates for \(r_2(L^q(\mu ))\) for the values \(1\le q<2\).

Combinatorics010102 general mathematicsMathematical analysisBanach space010103 numerical & computational mathematics0101 mathematicsAlgebra over a fieldLp space01 natural sciencesBohr radiusMathematics
researchProduct

Extending the star order to Rickart rings

2015

Star partial order was initially introduced for semigroups and rings with (proper) involution. In particular, this order has recently been studied on Rickart *-rings. It is known that the star order in such rings can be characterized by conditions not involving involution explicitly. Owing to these characterizations, the order can be extended to certain special Rickart rings named strong in the paper; this extension is the objective of the paper. The corresponding order structure of strong Rickart rings is studied more thoroughly. In particular, the most significant lattice properties of star-ordered Rickart *-rings are successfully transferred to strong Rickart rings; also several new resu…

CombinatoricsAlgebra and Number TheoryMathematics::Commutative Algebra010201 computation theory & mathematicsMathematics::Rings and AlgebrasOrder structureLattice properties010103 numerical & computational mathematics0102 computer and information sciences0101 mathematics01 natural sciencesMathematicsLinear and Multilinear Algebra
researchProduct

An algorithm to find all paths between two nodes in a graph

1990

CombinatoricsComputational MathematicsNumerical AnalysisPhysics and Astronomy (miscellaneous)Applied MathematicsModeling and SimulationGraph (abstract data type)Adjacency matrixAlgorithmComputer Science ApplicationsMathematicsJournal of Computational Physics
researchProduct

The Linear Ordering Polytope

2010

So far we developed a general integer programming approach for solving the LOP. It was based on the canonical IP formulation with equations and 3-dicycle inequalities which was then strengthened by generating mod-k-inequalities as cutting planes. In this chapter we will add further ingredients by looking for problem- specific inequalities. To this end we will study the convex hull of feasible solutions of the LOP: the so-called linear ordering polytope.

CombinatoricsConvex hullLinear programmingBirkhoff polytopeComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONConvex polytopeCross-polytopeMathematicsofComputing_NUMERICALANALYSISUniform k 21 polytopeEhrhart polynomialVertex enumeration problemMathematics
researchProduct

The simplex dispersion ordering and its application to the evaluation of human corneal endothelia

2009

A multivariate dispersion ordering based on random simplices is proposed in this paper. Given a R^d-valued random vector, we consider two random simplices determined by the convex hulls of two independent random samples of sizes d+1 of the vector. By means of the stochastic comparison of the Hausdorff distances between such simplices, a multivariate dispersion ordering is introduced. Main properties of the new ordering are studied. Relationships with other dispersion orderings are considered, placing emphasis on the univariate version. Some statistical tests for the new order are proposed. An application of such ordering to the clinical evaluation of human corneal endothelia is provided. Di…

CombinatoricsConvex hullStatistics and ProbabilityNumerical AnalysisHausdorff distanceSimplexMultivariate random variableHausdorff spaceRegular polygonUnivariateStatistical dispersionStatistics Probability and UncertaintyMathematicsJournal of Multivariate Analysis
researchProduct

Hausdorff dimension from the minimal spanning tree

1993

A technique to estimate the Hausdorff dimension of strange attractors, based on the minimal spanning tree of the point distribution is extensively tested in this work. This method takes into account in some sense the infimum requirement appearing in the definition of the Hausdorff dimension. It provides accurate estimates even for a low number of data points and it is especially suited to high-dimensional systems.

CombinatoricsDiscrete mathematicsHausdorff distancePacking dimensionHausdorff dimensionMathematicsofComputing_NUMERICALANALYSISMinkowski–Bouligand dimensionDimension functionHausdorff measureUrysohn and completely Hausdorff spacesEffective dimensionMathematicsPhysical Review E
researchProduct