Search results for "numerical"
showing 10 items of 2002 documents
Blow-up collocation solutions of nonlinear homogeneous Volterra integral equations
2011
In this paper, collocation methods are used for detecting blow-up solutions of nonlinear homogeneous Volterra-Hammerstein integral equations. To do this, we introduce the concept of "blow-up collocation solution" and analyze numerically some blow-up time estimates using collocation methods in particular examples where previous results about existence and uniqueness can be applied. Finally, we discuss the relationships between necessary conditions for blow-up of collocation solutions and exact solutions.
Collocation Method for Linear BVPs via B-spline Based Fuzzy Transform
2018
The paper is devoted to an application of a modified F-transform technique based on B-splines in solving linear boundary value problems via the collocation method. An approximate solution is sought as a composite F-transform of a discrete function (which allows the solution to be compactly stored as the values of this discrete function). We demonstrate the effectiveness of the described technique with numerical examples, compare it with other methods and propose theoretical results on the order of approximation when the fuzzy partition is based on cubic B-splines.
A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential …
2002
Abstract In this article, we present a thorough numerical comparison between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of boundary value problems for partial differential equations. A series of test examples was solved with these two schemes, different problems with different type of governing equations, and boundary conditions. Particular emphasis was paid to the ability of these schemes to solve the steady-state convection-diffusion equation at high values of the Peclet number. From the examples tested in this work, it was observed that the system of algebraic equations obtained with the symmetric method was in general simpler to solve …
Color and Flow Based Superpixels for 3D Geometry Respecting Meshing
2014
We present an adaptive weight based superpixel segmentation method for the goal of creating mesh representation that respects the 3D scene structure. We propose a new fusion framework which employs both dense optical flow and color images to compute the probability of boundaries. The main contribution of this work is that we introduce a new color and optical flow pixel-wise weighting model that takes into account the non-linear error distribution of the depth estimation from optical flow. Experiments show that our method is better than the other state-of-art methods in terms of smaller error in the final produced mesh.
The Bohr Radius of a Banach Space
2009
Following the scalar-valued case considered by Djakow and Ramanujan (A remark on Bohr’s theorem and its generalizations 14:175–178, 2000) we introduce, for each complex Banach space X and each \(1\le p0\). We study the p-Bohr radius of the Lebesgue spaces \(L^q(\mu )\) for different values of p and q. In particular we show that \(r_p(L^q(\mu ))=0\) whenever \(p<2\) and \(dim(L^q(\mu ))\ge 2\) and \(r_p(L^q(\mu ))=1\) whenever \(p\ge 2\) and \(p'\le q\le p\). We also provide some lower estimates for \(r_2(L^q(\mu ))\) for the values \(1\le q<2\).
Extending the star order to Rickart rings
2015
Star partial order was initially introduced for semigroups and rings with (proper) involution. In particular, this order has recently been studied on Rickart *-rings. It is known that the star order in such rings can be characterized by conditions not involving involution explicitly. Owing to these characterizations, the order can be extended to certain special Rickart rings named strong in the paper; this extension is the objective of the paper. The corresponding order structure of strong Rickart rings is studied more thoroughly. In particular, the most significant lattice properties of star-ordered Rickart *-rings are successfully transferred to strong Rickart rings; also several new resu…
An algorithm to find all paths between two nodes in a graph
1990
The Linear Ordering Polytope
2010
So far we developed a general integer programming approach for solving the LOP. It was based on the canonical IP formulation with equations and 3-dicycle inequalities which was then strengthened by generating mod-k-inequalities as cutting planes. In this chapter we will add further ingredients by looking for problem- specific inequalities. To this end we will study the convex hull of feasible solutions of the LOP: the so-called linear ordering polytope.
The simplex dispersion ordering and its application to the evaluation of human corneal endothelia
2009
A multivariate dispersion ordering based on random simplices is proposed in this paper. Given a R^d-valued random vector, we consider two random simplices determined by the convex hulls of two independent random samples of sizes d+1 of the vector. By means of the stochastic comparison of the Hausdorff distances between such simplices, a multivariate dispersion ordering is introduced. Main properties of the new ordering are studied. Relationships with other dispersion orderings are considered, placing emphasis on the univariate version. Some statistical tests for the new order are proposed. An application of such ordering to the clinical evaluation of human corneal endothelia is provided. Di…
Hausdorff dimension from the minimal spanning tree
1993
A technique to estimate the Hausdorff dimension of strange attractors, based on the minimal spanning tree of the point distribution is extensively tested in this work. This method takes into account in some sense the infimum requirement appearing in the definition of the Hausdorff dimension. It provides accurate estimates even for a low number of data points and it is especially suited to high-dimensional systems.