6533b86efe1ef96bd12cb2d2

RESEARCH PRODUCT

The Bohr Radius of a Banach Space

Oscar Blasco

subject

Combinatorics010102 general mathematicsMathematical analysisBanach space010103 numerical & computational mathematics0101 mathematicsAlgebra over a fieldLp space01 natural sciencesBohr radiusMathematics

description

Following the scalar-valued case considered by Djakow and Ramanujan (A remark on Bohr’s theorem and its generalizations 14:175–178, 2000) we introduce, for each complex Banach space X and each \(1\le p0\). We study the p-Bohr radius of the Lebesgue spaces \(L^q(\mu )\) for different values of p and q. In particular we show that \(r_p(L^q(\mu ))=0\) whenever \(p<2\) and \(dim(L^q(\mu ))\ge 2\) and \(r_p(L^q(\mu ))=1\) whenever \(p\ge 2\) and \(p'\le q\le p\). We also provide some lower estimates for \(r_2(L^q(\mu ))\) for the values \(1\le q<2\).

https://doi.org/10.1007/978-3-0346-0211-2_5