0000000000002652

AUTHOR

Oscar Blasco

showing 49 related works from this author

On Functions of Integrable Mean Oscillation

2005

Given we denote by the modulus of mean oscillation given by where is an arc of , stands for the normalized length of , and . Similarly we denote by the modulus of harmonic oscillation given by where and stand for the Poisson kernel and the Poisson integral of respectively. It is shown that, for each , there exists such that

Arc (geometry)symbols.namesakeIntegrable systemOscillationGeneral MathematicsPoisson kernelMathematical analysissymbolsModulusHarmonic oscillatorMathematicsRevista Matemática Complutense
researchProduct

On the Unit Ball of Operator-valued H 2-functions

2009

Let X be a complex Banach space and let H 2 (\( \mathbb{D} \), X) denote the space of X-valued analytic functions in the unit disc such that $$ \mathop {sup}\limits_{0 < r < 1} \int_0^{2\pi } {\left\| {F\left( {re^{it} } \right)} \right\|^2 \frac{{dt}} {{2\pi }} < \infty .} $$ It is shown that a function F belongs to the unit ball of H 2 ( \( \mathbb{D} \), X) if and only if there exist f∈H ∞ (\( \mathbb{D} \), X) and ϕ∈H ∞ (\( \mathbb{D} \)) such that $$ \left\| {f\left( z \right)} \right\|^2 + \left| {\varphi \left( z \right)} \right|^2 \leqslant 1 and F\left( z \right) = \frac{{f\left( z \right)}} {{1 - z\varphi \left( z \right)}} $$ for |z| < 1.

CombinatoricsUnit sphereOperator (physics)Mathematical analysisBanach spaceUnit (ring theory)Mathematics
researchProduct

A bilinear version of Orlicz–Pettis theorem

2008

Abstract Given three Banach spaces X, Y and Z and a bounded bilinear map B : X × Y → Z , a sequence x = ( x n ) n ⊆ X is called B -absolutely summable if ∑ n = 1 ∞ ‖ B ( x n , y ) ‖ Z is finite for any y ∈ Y . Connections of this space with l weak 1 ( X ) are presented. A sequence x = ( x n ) n ⊆ X is called B -unconditionally summable if ∑ n = 1 ∞ | 〈 B ( x n , y ) , z ∗ 〉 | is finite for any y ∈ Y and z ∗ ∈ Z ∗ and for any M ⊆ N there exists x M ∈ X for which ∑ n ∈ M 〈 B ( x n , y ) , z ∗ 〉 = 〈 B ( x M , y ) , z ∗ 〉 for all y ∈ Y and z ∗ ∈ Z ∗ . A bilinear version of Orlicz–Pettis theorem is given in this setting and some applications are presented.

SequenceApplied MathematicsMathematical analysisBanach spaceBilinear interpolationAbsolute and strong summabilitySpace (mathematics)Sequence spacesSequence spaceCombinatoricsBounded functionBanach sequence spacesAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Restricted weak type on maximal linear and multilinear integral maps

2006

It is shown that multilinear operators of the form T ( f 1 , . . . , f k ) ( x ) T(f_1,...,f_k)(x) = ∫ R n K ( x , y 1 , . . . , y k ) f 1 ( y 1 ) . . . f k ( y k ) d y 1 . . . d y k =\!\int _{\mathbb {R}^n}\!K(x,y_1,...,y_k)f_1(y_1)... f_k(y_k)dy_1...dy_k of restricted weak type ( 1 , . . . , 1 , q ) (1,...,1,q) are always of weak type ( 1 , . . . , 1 , q ) (1,...,1,q) whenever the map x → K x x\to K_x is a locally integrable L 1 ( R n ) L^1(\mathbb {R}^n) -valued function.

Discrete mathematicsMultilinear mapPure mathematicsIntegrable systemApplied MathematicsGeneral MathematicsOf the formFunction (mathematics)Weak typeMathematicsProceedings of the American Mathematical Society
researchProduct

Characterization of greedy bases in Banach spaces

2017

Abstract We shall present a new characterization of greedy bases and 1-greedy bases in terms of certain functionals defined using distances to one dimensional subspaces generated by the basis. We also introduce a new property that unifies the notions of unconditionality and democracy and allows us to recover a better dependence on the constants.

Numerical AnalysisPure mathematicsProperty (philosophy)Basis (linear algebra)Applied MathematicsGeneral Mathematics010102 general mathematicsBanach space010103 numerical & computational mathematicsCharacterization (mathematics)01 natural sciencesLinear subspaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisFOS: MathematicsProperty a0101 mathematicsAnalysisMathematics
researchProduct

Norm estimates for operators from Hp to ℓq

2008

Abstract We give upper and lower estimates of the norm of a bounded linear operator from the Hardy space H p to l q in terms of the norm of the rows and the columns of its associated matrix in certain vector-valued sequence spaces.

Applied MathematicsMathematical analysisMatrix normSchatten class operatorHardy spaceBounded operatorCombinatoricssymbols.namesakesymbolsSchatten normCondition numberOperator normAnalysisDual normMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Semigroups of composition operators and integral operators in spaces of analytic functions

2013

We study the maximal spaces of strong continuity on BMOA and the Bloch space B for semigroups of composition operators. Characterizations are given for the cases when these maximal spaces are V MOA or the little Bloch B0. These characterizations are in terms of the weak compactness of the resolvent function or in terms of a specially chosen symbol g of an integral operator Tg. For the second characterization we prove and use an independent result, namely that the operators Tg are weakly compact on the above mentioned spaces if and only if they are compact.

Discrete mathematicsBloch spaceCompact spaceOperator (computer programming)Nuclear operatorGeneral MathematicsOperator theoryFourier integral operatorCompact operator on Hilbert spaceMathematicsResolvent
researchProduct

Remarks on the semivariation of vector measures with respect to Banach spaces.

2007

Suppose that and . It is shown that any Lp(µ)-valued measure has finite L2(v)-semivariation with respect to the tensor norm for 1 ≤ p &lt; ∞ and finite Lq(v)-semivariation with respect to the tensor norm whenever either q = 2 and 1 ≤ p ≤ 2 or q &gt; max{p, 2}. However there exist measures with infinite Lq-semivariation with respect to the tensor norm for any 1 ≤ q &lt; 2. It is also shown that the measure m (A) = χA has infinite Lq-semivariation with respect to the tensor norm if q &lt; p.

CombinatoricsDiscrete mathematicsGeneral MathematicsNorm (mathematics)Locally convex topological vector spaceComputingMethodologies_DOCUMENTANDTEXTPROCESSINGBanach spaceInterpolation spaceUniformly convex spaceBanach manifoldLp spaceNormed vector spaceMathematicsBulletin of the Australian Mathematical Society
researchProduct

Bergman and Bloch spaces of vector-valued functions

2003

We investigate Bergman and Bloch spaces of analytic vector-valued functions in the unit disc. We show how the Bergman projection from the Bochner-Lebesgue space Lp(, X) onto the Bergman space Bp(X) extends boundedly to the space of vector-valued measures of bounded p-variation Vp(X), using this fact to prove that the dual of Bp(X) is Bp(X*) for any complex Banach space X and 1 < p < ∞. As for p = 1 the dual is the Bloch space ℬ(X*). Furthermore we relate these spaces (via the Bergman kernel) with the classes of p-summing and positive p-summing operators, and we show in the same framework that Bp(X) is always complemented in p(X). (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Bloch spacePure mathematicsBergman spaceGeneral MathematicsBounded functionMathematical analysisBanach spaceInterpolation spaceSpace (mathematics)Bergman kernelReproducing kernel Hilbert spaceMathematicsMathematische Nachrichten
researchProduct

Hölder inequality for functions that are integrable with respect to bilinear maps

2008

Let $(\Omega, \Sigma, \mu)$ be a finite measure space, $1\le p&lt;\infty$, $X$ be a Banach space $X$ and $B:X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p$-integrable with respect to $B$ whenever $\sup_{\|y\|=1} \int_\Omega \|B(f(w),y)\|^p\,d\mu&lt;\infty$. We get an analogue to Hölder's inequality in this setting.

CombinatoricsHölder's inequalityGeneral MathematicsBounded functionMathematical analysisBanach spaceFunction (mathematics)Bilinear mapSpace (mathematics)OmegaMeasure (mathematics)MathematicsMATHEMATICA SCANDINAVICA
researchProduct

LORENTZ SPACES OF VECTOR-VALUED MEASURES

2003

Algebrasymbols.namesakeGeneral MathematicsLorentz transformationMathematical analysissymbolsMathematicsJournal of the London Mathematical Society
researchProduct

The norm of the characteristic function of a set in the John‐Nirenberg space of exponent p

2020

Set (abstract data type)Characteristic function (convex analysis)Pure mathematicsGeneral MathematicsGeneral EngineeringExponentSpace (mathematics)Nirenberg and Matthaei experimentBounded mean oscillationMathematicsMathematical Methods in the Applied Sciences
researchProduct

Lipschitz-type conditions on homogeneous Banach spaces of analytic functions

2017

Abstract In this paper we deal with Banach spaces of analytic functions X defined on the unit disk satisfying that R t f ∈ X for any t > 0 and f ∈ X , where R t f ( z ) = f ( e i t z ) . We study the space of functions in X such that ‖ P r ( D f ) ‖ X = O ( ω ( 1 − r ) 1 − r ) , r → 1 − where D f ( z ) = ∑ n = 0 ∞ ( n + 1 ) a n z n and ω is a continuous and non-decreasing weight satisfying certain mild assumptions. The space under consideration is shown to coincide with the subspace of functions in X satisfying any of the following conditions: (a) ‖ R t f − f ‖ X = O ( ω ( t ) ) , (b) ‖ P r f − f ‖ X = O ( ω ( 1 − r ) ) , (c) ‖ Δ n f ‖ X = O ( ω ( 2 − n ) ) , or (d) ‖ f − s n f ‖ X = O ( ω …

Applied Mathematics010102 general mathematicsBanach spaceType (model theory)Space (mathematics)Lipschitz continuity01 natural sciencesUnit disk010101 applied mathematicsCombinatoricsHomogeneous0101 mathematicsAnalysisAnalytic functionMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Carleson's counterexample and a scale of Lorentz-BMO spaces on the bitorus

2005

We introduce a full scale of Lorentz-BMO spaces BMO L p,q on the bidisk, and show that these spaces do not coincide for different values ofp andq. Our main tool is a detailed analysis of Carleson's construction in [C].

symbols.namesakeScale (ratio)General MathematicsLorentz transformationMathematical analysisFull scalesymbolsMathematicsCounterexample
researchProduct

The Bergman projection on weighted spaces: L1and Herz spaces

2002

We nd necessary and sucien t conditions on radial weights w on the unit disc so that the Bergman type projections of Forelli{Rudin are bounded on L 1 (w) and in the Herz spaces K q(w). 1. Introduction and preliminaries. The purpose of this paper is to study spaces of analytic functions on the unit disc D provided with a norm of a weighted Herz space. More precisely we consider the classical family of Bergman projections Ps, s > 1, and we give necessary and sucien t conditions on the weight making these projections continuous in the cor- responding weighted Herz space. We also consider the continuity of these

Pure mathematicsBergman spaceGeneral MathematicsNorm (mathematics)Bounded functionMathematical analysisMathematicsAnalytic functionStudia Mathematica
researchProduct

A space of projections on the Bergman space

2010

We define a set of projections on the Bergman space A 2 , which is parameterized by an ane subset of a Banach space of holomorphic functions in the disk and which includes the classical Forelli-Rudin projections.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsMathematics::Complex VariablesGeneral MathematicsInfinite-dimensional vector functionHolomorphic functionBanach spaceMathematics::General TopologyQuotient space (linear algebra)Continuous functions on a compact Hausdorff spaceBergman spaceBesov spaceBergman kernelMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

p-VARIATION OF VECTOR MEASURES WITH RESPECT TO BILINEAR MAPS

2008

AbstractWe introduce the spaces Vℬp(X) (respectively 𝒱ℬp(X)) of the vector measures ℱ:Σ→X of bounded (p,ℬ)-variation (respectively of bounded (p,ℬ)-semivariation) with respect to a bounded bilinear map ℬ:X×Y →Z and show that the spaces Lℬp(X) consisting of functions which are p-integrable with respect to ℬ, defined in by Blasco and Calabuig [‘Vector-valued functions integrable with respect to bilinear maps’, Taiwanese Math. J. to appear], are isometrically embedded in Vℬp(X). We characterize 𝒱ℬp(X) in terms of bilinear maps from Lp′×Y into Z and Vℬp(X) as a subspace of operators from Lp′(Z*) into Y*. Also we define the notion of cone absolutely summing bilinear maps in order to describe t…

Vector integrationDiscrete mathematicsVector measureGeneral MathematicsBounded functionBilinear interpolationBilinear formBilinear mapP-variationSubspace topologyMathematicsBulletin of the Australian Mathematical Society
researchProduct

Some Aspects of Vector-Valued Singular Integrals

2009

Let A, B be Banach spaces and \(1 < p < \infty. \; T\) is said to be a (p, A, B)- CalderoLon–Zygmund type operator if it is of weak type (p, p), and there exist a Banach space E, a bounded bilinear map \(u: E \times A \rightarrow B,\) and a locally integrable function k from \(\mathbb{R}^n \times \mathbb{R}^n \backslash \{(x, x): x \in \mathbb{R}^n\}\) into E such that $$T\;f(x) = \int u(k(x, y), f(y))dy$$ for every A-valued simple function f and \(x \notin \; supp \; f.\)

CombinatoricsPhysicsMathematics::Functional Analysissymbols.namesakeBounded functionBanach spacesymbolsLocally integrable functionFunction (mathematics)Type (model theory)Hardy spaceSingular integralWeak type
researchProduct

Modulus of continuity with respect to semigroups of analytic functions and applications

2016

Abstract Given a complex Banach space E , a semigroup of analytic functions ( φ t ) and an analytic function F : D → E we introduce the modulus w φ ( F , t ) = sup | z | 1 ⁡ ‖ F ( φ t ( z ) ) − F ( z ) ‖ . We show that if 0 α ≤ 1 and F belongs to the vector-valued disc algebra A ( D , E ) , the Lipschitz condition M ∞ ( F ′ , r ) = O ( ( 1 − r ) 1 − α ) as r → 1 is equivalent to w φ ( F , t ) = O ( t α ) as t → 0 for any semigroup of analytic functions ( φ t ) , with φ t ( 0 ) = 0 and infinitesimal generator G , satisfying that φ t ′ and G belong to H ∞ ( D ) with sup 0 ≤ t ≤ 1 ⁡ ‖ φ ′ ‖ ∞ ∞ , and in particular is equivalent to the condition ‖ F − F r ‖ A ( D , E ) = O ( ( 1 − r ) α ) as r …

Discrete mathematicsPure mathematicsSemigroupApplied Mathematics010102 general mathematicsBanach spaceHardy spaceType (model theory)Lipschitz continuity01 natural sciencesModulus of continuity010101 applied mathematicssymbols.namesakesymbolsInfinitesimal generator0101 mathematicsAnalysisMathematicsAnalytic functionJournal of Mathematical Analysis and Applications
researchProduct

Atomic Decomposition of Weighted Besov Spaces

1996

We find the atomic decomposition of functions in the weighted Besov spaces under certain factorization conditions on the weight. Introduction. After achieving the atomic decomposition of Hardy spaces (see [8,22, 33]), many of the function saces have been shown to admit similar decompositions. Let us mention the decomposition of B.M.O. (see [32, 25]), Bergman spaces (see [9, 23]), the predual of Bloch space (see [ 11]), Besov spaces (see [15, 4, 10]), Lipschitz spaces (see [18]), Triebel-Lizorkin spaces (see [16, 31]),... They are obtained by quite different methods, but there is a unified and beautiful approach to get the decomposition for most of the spaces. This is the use of a formula du…

Bloch spacesymbols.namesakePure mathematicsFactorizationGeneral MathematicsSchur's lemmasymbolsBesov spacePredualDirect proofHardy spaceLipschitz continuityMathematicsJournal of the London Mathematical Society
researchProduct

Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces

1997

When dealing with vector-valued functions, sometimes is rather difficult to give non trivial examples, meaning examples which do not come from tensoring scalar-valued functions and vectors in the Banach space, belonging to certain classes. This is the situation for vector valued BMO. One of the objectives of this paper is to look for methods to produce such examples. Our main tool will be the vector-valued extension of the following result on multipliers, proved in [MP], which says that the space of multipliers between H and BMOA can be identified with the space of Bloch functions B, i.e. (H, BMOA) = B (see Section 3 for notation), which, in particular gives that g ∗ f ∈ BMOA whenever f ∈ H…

Discrete mathematicsGeneral MathematicsInfinite-dimensional vector functionBanach space46J15Banach manifoldHardy space30G30Bounded mean oscillationBounded operatorsymbols.namesake46B2046E40symbolsInterpolation space46B28Lp spaceMathematics
researchProduct

VECTOR-VALUED FUNCTIONS INTEGRABLE WITH RESPECT TO BILINEAR MAPS

2008

Let $(\Omega, \Sigma, \mu)$ be a $\sigma-$finite measure space, $1\le p \lt \infty$, $X$ be a Banach space $X$ and ${\cal B} :X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p-$integrable with respect to ${\cal B}$ whenever $\sup\{\int_\Omega\|{\cal B}(f(w),y)\|^pd\mu: \|y\|=1\}$ is finite. We identify the spaces of functions integrable with respect to the bilinear maps arising from H\"older's and Young's inequalities. We apply the theory to give conditions on $X$-valued kernels for the boundedness of integral operators $T_{{\cal B}}(f) (w)=\int_{\Omega'}{{\cal B}}(k(w,w'),$ $f(w'))d\mu'(w')$ from ${\mathrm L}^p(Y)$ into ${\mathrm L}^p(Z)$, extending t…

Discrete mathematicsIntegrable systemGeneral MathematicsBanach spaceFunction (mathematics)Space (mathematics)Measure (mathematics)Omegavector-valued functionsbilinear mapBounded function42B3047B35Vector-valued functionMathematics
researchProduct

VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE

2003

Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the Kothe-Bochner function space defined as the set of measurable functions f : Ω → X such that the nonnegative functions ‖f‖X : Ω → [0,∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the pvariation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE(X) is then studied. It is shown, among other things and with some restriction of absolute continuity of the norms, that (E(X))∗ = VE′ (X ∗), that VE(X) can be identified with space of cone absolutely summing operators fr…

Discrete mathematicsPure mathematicsSquare-integrable functionBergman spaceFunction spaceInfinite-dimensional vector functionBochner spaceLp spaceQuotient space (linear algebra)Complete metric spaceMathematicsFunction Spaces
researchProduct

Norm continuity and related notions for semigroups on Banach spaces

1996

We find some conditions on a c0-semigroup on a Banach space and its resolvent connected with the norm continuity of the semigroup. We use them to get characterizations of norm continuous, eventually norm continuous and eventually compact semigroups on Hilbert spaces in terms of the growth of the resolvent of their generator.

Sobolev spaceDiscrete mathematicsPure mathematicsMathematics::Operator AlgebrasGeneral MathematicsBanach spaceInterpolation spaceBanach manifoldLp spaceReflexive spaceC0-semigroupDual normMathematicsArchiv der Mathematik
researchProduct

Equivalences involving (p,q)-multi-norms

2014

AlgebraTensor productGeneral MathematicsOperator normMathematicsStudia Mathematica
researchProduct

Remarks on p-summing multipliers.

2001

Let X and Y be Banach spaces and 1 ≤ p < ∞, a sequence of operators (Tn) from X into Y is called a p-summing multiplier if (Tn(xn)) belongs to lp(Y) whenever (xn) satisfies that ((x*, xn)) belongs to lp for all x* ∈ X*. We present several examples of p-summing multipliers and extend known results for p-summing operators to this setting. We get, using almost summing and Rademacher bounded operators, some sufficient conditions for a sequence to be a p-summing multiplier between spaces with some geometric properties.

Multiplier (Fourier analysis)Discrete mathematicsCombinatoricsSequenceBounded functionBanach spaceMathematics
researchProduct

Norm estimates for operators from Hp to ℓq

AbstractWe give upper and lower estimates of the norm of a bounded linear operator from the Hardy space Hp to ℓq in terms of the norm of the rows and the columns of its associated matrix in certain vector-valued sequence spaces.

Hardy spacesAbsolutely summing operatorsVector-valued BMOVector-valued sequence spacesJournal of Mathematical Analysis and Applications
researchProduct

Summing multi-norms defined by Orlicz spaces and symmetric sequence space

2016

We develop the notion of the \((X_1,X_2)\)-summing power-norm based on a~Banach space \(E\), where \(X_1\) and \(X_2\) are symmetric sequence spaces. We study the particular case when \(X_1\) and \(X_2\) are Orlicz spaces \(\ell_\Phi\) and \(\ell_\Psi\) respectively and analyze under which conditions the \((\Phi, \Psi)\)-summing power-norm becomes a~multinorm. In the case when \(E\) is also a~symmetric sequence space \(L\), we compute the precise value of \(\|(\delta_1,\cdots,\delta_n)\|_n^{(X_1,X_2)}\) where \((\delta_k)\) stands for the canonical basis of \(L\), extending known results for the \((p,q)\)-summing power-norm based on the space \(\ell_r\) which corresponds to \(X_1=\ell_p\), …

CombinatoricsMathematics::Functional AnalysisMathematical analysisStandard basisSequence spaceMathematicsCommentationes Mathematicae
researchProduct

Spaces of Operator-valued Functions Measurable with Respect to the Strong Operator Topology

2009

Let X and Y be Banach spaces and (Ω, Σ, μ) a finite measure space. In this note we introduce the space L p /μ; ℒ(X, Y)] consisting of all (equivalence classes of) functions Φ:Ω↦ℒ(X, Y) such that ω↦Φ(ω)x is strongly μ-measurable for all x∈X and ω↦Φ(ω)f(ω) belongs to L 1(μ; Y) for all f∈L p′ (μ; X), 1/p+1/p′=1. We show that functions in L p /μ; ℒ(X, Y)] define operator-valued measures with bounded p-variation and use these spaces to obtain an isometric characterization of the space of all ℒ(X, Y)-valued multipliers acting boundedly from L p (μ; X) into L q (μ; Y), 1≤q<p<∞.

Operator (physics)010102 general mathematicsMathematical analysisBanach spaceCharacterization (mathematics)Space (mathematics)01 natural sciencesMeasure (mathematics)010101 applied mathematicsCombinatoricsBounded function0101 mathematicsMathematicsStrong operator topology
researchProduct

Rate of growth of frequently hypercyclic functions

2010

AbstractWe study the rate of growth of entire functions that are frequently hypercyclic for the differentiation operator or the translation operator. Moreover, we prove the existence of frequently hypercyclic harmonic functions for the translation operator and we study the rate of growth of harmonic functions that are frequently hypercyclic for partial differentiation operators.

Translation operatorPure mathematicsOperator (computer programming)Harmonic functionGeneral MathematicsEntire functionMathematical analysisRate of growthMathematicsProceedings of the Edinburgh Mathematical Society
researchProduct

On Taylor coefficients of entire functions integrable against exponential weights

2001

symbols.namesakeIntegrable systemGeneral MathematicsEntire functionMathematical analysisTaylor seriessymbolsTaylor coefficientsExponential functionMathematics
researchProduct

On coefficients of vector-valued Bloch functions

2004

Multiplier (Fourier analysis)Bloch sphereGeneral MathematicsMathematical analysisOperator spaceMathematicsStudia Mathematica
researchProduct

Holomorphic Hölder‐type spaces and composition operators

2020

Pure mathematicsGeneral MathematicsGeneral EngineeringHolomorphic functionComposition (combinatorics)Type (model theory)Modulus of continuityMathematicsMathematical Methods in the Applied Sciences
researchProduct

Type and Cotype in Vector-Valued Nakano Sequence Spaces

2001

AbstractGiven a sequence of Banach spaces {Xn}n and a sequence of real numbers {pn}n in [1,∞), the vector-valued Nakano sequence spaces ℓ({pn},{Xn}) consist of elements {xn}n in ∏nXn for which there is a constant λ>0 such that ∑n(‖xn‖/λ)pn<∞. In this paper we find the conditions on the Banach spaces Xn and on the sequence {pn}n for the spaces ℓ({pn},{Xn}) to have cotype q or type p.

CombinatoricsSequenceApplied MathematicsMathematical analysiscotypeBanach spaceType (model theory)typeConstant (mathematics)Analysisnakano sequence spaceReal numberMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Commutators of linear and bilinear Hilbert transforms

2003

Let α ∈ R \alpha \in \mathbb {R} , and let H α ( f , g ) ( x ) = 1 π p . v . ∫ f ( x − t ) g ( x − α t ) d t t H_\alpha (f,g)(x)=\frac {1}{\pi } p.v. \int f(x-t)g(x-\alpha t)\frac {dt}{t} and H f ( x ) = 1 π p . v . ∫ f ( x − t ) d t t Hf(x)= \frac {1}{\pi } p.v.\int f(x-t)\frac {dt}{t} denote the bilinear and linear Hilbert transforms, respectively. It is proved that, for 1 &gt; p &gt; ∞ 1&gt;p&gt;\infty and α 1 ≠ α 2 \alpha _1\ne \alpha _2 , H α 1 − H α 2 H_{\alpha _1}-H_{\alpha _2} maps L p × B M O L^p\times BMO into L p L^{p} and it maps B M O × L p BMO \times L^p into L p L^{p} if and only if sign ⁡ ( α 1 ) = sign ⁡ ( α 2 ) \operatorname {sign}(\alpha _1)=\operatorname {sign}(\alpha _2…

CombinatoricslawApplied MathematicsGeneral MathematicsBounded functionMathematical analysisBilinear interpolationCommutator (electric)law.inventionMathematicsSign (mathematics)Proceedings of the American Mathematical Society
researchProduct

Multipliers on Vector Valued Bergman Spaces

2002

AbstractLet X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p &lt; ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.

Pure mathematicsSequenceGeneral Mathematics010102 general mathematicsBanach spaceFunction (mathematics)Type (model theory)01 natural sciencesMultiplier (Fourier analysis)Bergman spaceBounded function0103 physical sciences010307 mathematical physics0101 mathematicsUnit (ring theory)MathematicsCanadian Journal of Mathematics
researchProduct

New spaces of matrices with operator entries

2019

In this paper, we will consider matrices with entries in the space of operators $\mathcal{B}(H)$, where $H$ is a separable Hilbert space and consider the class of matrices that can be approached in the operator norm by matrices with a finite number of diagonals. We will use the Schur product with Toeplitz matrices generated by summability kernels to describe such a class and show that in the case of Toeplitz matrices it can be identified with the space of continuous functions with values in $\mathcal B(H)$. We shall also introduce matriceal versions with operator entries of classical spaces of holomorphic functions such as $H^\infty(\mathbb{D})$ and $A(\mathbb{D})$ when dealing with upper t…

Discrete mathematicsClass (set theory)010102 general mathematics010103 numerical & computational mathematicsSpace (mathematics)01 natural sciencesToeplitz matrixFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics (miscellaneous)Operator (computer programming)FOS: Mathematics47L10 46E40 (Primary) 47A56 15B05 46G10 (Secondary)Hadamard product0101 mathematicsVector-valued functionComputer Science::DatabasesSeparable hilbert spaceMathematicsSchur multiplier
researchProduct

Embedding of analytic function spaces with given mean growth of the derivative

2006

MSC (2000) 30D55 If φ is a positive function defined in (0,1) and 0 <p< ∞, we consider the space L(p, φ) which consists of all functions f analytic in the unit disc D for which the integral means of the derivative Mp(r, f � )= " 1 2π Rπ −π þ f � (re iθ ) þ p dθ "1/p , 0 <r< 1, satisfy M p(r, f � )=O (φ(r)) ,a sr → 1. In this paper, for any given p ∈ (0,1), we characterize the functions φ, among a certain class of weight functions, to be able to embedd L(p, φ) into classical function spaces. These results complement other previously obtained by the authors for p ≥ 1. c

Discrete mathematicssymbols.namesakeComplement (group theory)Function spaceGeneral MathematicssymbolsEmbeddingDerivativeHardy spaceSpace (mathematics)Unit (ring theory)MathematicsAnalytic functionMathematische Nachrichten
researchProduct

Remarks on (Q, P, Y)-Summing Operators

2003

Abstract unavailable at this time... Mathematics Subject Classification (1991): 47B10. Key words: Summing operators; injective tensor product. Quaestiones Mathematicae 26(2003), 97-103

AlgebraPure mathematicsMathematics (miscellaneous)Tensor productMathematics Subject ClassificationKey (cryptography)Injective functionMathematicsQuaestiones Mathematicae
researchProduct

Notes on bilinear multipliers on Orlicz spaces

2019

Let $\Phi_1 , \Phi_2 $ and $ \Phi_3$ be Young functions and let $L^{\Phi_1}(\mathbb{R})$, $L^{\Phi_2}(\mathbb{R})$ and $L^{\Phi_3}(\mathbb{R})$ be the corresponding Orlicz spaces. We say that a function $m(\xi,\eta)$ defined on $\mathbb{R}\times \mathbb{R}$ is a bilinear multiplier of type $(\Phi_1,\Phi_2,\Phi_3)$ if \[ B_m(f,g)(x)=\int_\mathbb{R} \int_\mathbb{R} \hat{f}(\xi) \hat{g}(\eta)m(\xi,\eta)e^{2\pi i (\xi+\eta) x}d\xi d\eta \] defines a bounded bilinear operator from $L^{\Phi_1}(\mathbb{R}) \times L^{\Phi_2}(\mathbb{R})$ to $L^{\Phi_3}(\mathbb{R})$. We denote by $BM_{(\Phi_1,\Phi_2,\Phi_3)}(\mathbb{R})$ the space of all bilinear multipliers of type $(\Phi_1,\Phi_2,\Phi_3)$ and inve…

Mathematics - Functional AnalysisMultiplier (Fourier analysis)CombinatoricsBilinear operatorMathematics::Operator AlgebrasGeneral MathematicsFOS: MathematicsHigh Energy Physics::ExperimentType (model theory)Space (mathematics)Lp spaceMathematicsFunctional Analysis (math.FA)
researchProduct

On operator valued sequences of multipliers and R-boundedness

2007

AbstractIn recent papers (cf. [J.L. Arregui, O. Blasco, (p,q)-Summing sequences, J. Math. Anal. Appl. 274 (2002) 812–827; J.L. Arregui, O. Blasco, (p,q)-Summing sequences of operators, Quaest. Math. 26 (2003) 441–452; S. Aywa, J.H. Fourie, On summing multipliers and applications, J. Math. Anal. Appl. 253 (2001) 166–186; J.H. Fourie, I. Röntgen, Banach space sequences and projective tensor products, J. Math. Anal. Appl. 277 (2) (2003) 629–644]) the concept of (p,q)-summing multiplier was considered in both general and special context. It has been shown that some geometric properties of Banach spaces and some classical theorems can be described using spaces of (p,q)-summing multipliers. The p…

Discrete mathematicsSemi-Rademacher boundedApplied MathematicsLinear operatorsBanach spaceWeakly Rademacher boundedMultiplier (Fourier analysis)Linear mapTensor productOperator (computer programming)Multiplier sequenceBounded functionAlmost summingProjective space(pq)-Summing multiplierRademacher bounded sequenceAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Vector-valued Hardy inequalities and B-convexity

2000

Inequalities of the form $$\sum\nolimits_{k = 0}^\infty {|\hat f(m_k )|/(k + 1) \leqslant C||f||_1 } $$ for allf∈H 1, where {m k } are special subsequences of natural numbers, are investigated in the vector-valued setting. It is proved that Hardy's inequality and the generalized Hardy inequality are equivalent for vector valued Hardy spaces defined in terms ff atoms and that they actually characterizeB-convexity. It is also shown that for 1<q<∞ and 0<α<∞ the spaceX=H(1,q,γa) consisting of analytic functions on the unit disc such that $$\int_0^1 {(1 - r)^{q\alpha - 1} M_1^q (f,r) dr< \infty } $$ satisfies the previous inequality for vector valued functions inH 1 (X), defined as the space ofX…

General MathematicsMathematical analysisNatural numberHardy spaceSpace (mathematics)ConvexityCombinatoricssymbols.namesakesymbolsLocally integrable functionUnit (ring theory)Vector-valued functionMathematicsAnalytic function
researchProduct

Convolution of three functions by means of bilinear maps and applications

1999

When dealing with spaces of vector-valued analytic functions there is a natural way to understand multipliers between them. If X and Y are Banach spaces and L(X,Y ) stands for the space of linear and continuous operators we may consider the convolution of L(X,Y )-valued analytic functions, say F (z) = ∑ n=0∞ Tnz , and X-valued polynomials, say f(z) = ∑m n=0 xnz , to get the Y -valued function F ∗ f(z) = ∑ Tn(xn)z. The second author considered such a definition and studied multipliers between H(X) and BMOA(Y ) in [5]. When the functions take values in a Banach algebra A then the natural extension of multiplier is simply that if f(z) = ∑ anz n and g(z) = ∑ bnz , then f ∗ g(z) = ∑ an.bnz n whe…

Discrete mathematicsSymmetric bilinear formSesquilinear formGeneral MathematicsBanach spaceOrthogonal complementBilinear formMultiplier (Fourier analysis)46E40Tensor productInterpolation space46B2846G25MathematicsIllinois Journal of Mathematics
researchProduct

COMPLEX CONVEXITY AND VECTOR-VALUED LITTLEWOOD–PALEY INEQUALITIES

2003

Let 2 p 0s uch thatfHp(X) (� f(0)� p + λ (1 −| z| 2 ) p−1 � f � (z)� p dA(z)) 1/p ,f or all f ∈ H p (X). Applications to embeddings between vector-valued BMOA spaces defined via Poisson integral or Carleson measures are provided.

symbols.namesakePure mathematicsComplex convexityLittlewood paleyGeneral MathematicsMathematical analysisPoisson kernelsymbolsMathematicsBulletin of the London Mathematical Society
researchProduct

(p,q)-summing sequences

2002

Abstract A sequence (x j ) in a Banach space X is (p,q) -summing if for any weakly q -summable sequence (x j ∗ ) in the dual space we get a p -summable sequence of scalars (x j ∗ (x j )) . We consider the spaces formed by these sequences, relating them to the theory of (p,q) -summing operators. We give a characterization of the case p=1 in terms of integral operators, and show how these spaces are relevant for a general question on Banach spaces and their duals, in connection with Grothendieck theorem.

Discrete mathematicsSequenceFunctional analysisDual spaceApproximation propertyApplied MathematicsBanach spaceCharacterization (mathematics)BoundedCombinatoricsType and cotypeSequences in Banach spacesInterpolation spaceIntegral and (pq)-summing operatorsLp spaceGrothendieck theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

The Bohr Radius of a Banach Space

2009

Following the scalar-valued case considered by Djakow and Ramanujan (A remark on Bohr’s theorem and its generalizations 14:175–178, 2000) we introduce, for each complex Banach space X and each \(1\le p0\). We study the p-Bohr radius of the Lebesgue spaces \(L^q(\mu )\) for different values of p and q. In particular we show that \(r_p(L^q(\mu ))=0\) whenever \(p<2\) and \(dim(L^q(\mu ))\ge 2\) and \(r_p(L^q(\mu ))=1\) whenever \(p\ge 2\) and \(p'\le q\le p\). We also provide some lower estimates for \(r_2(L^q(\mu ))\) for the values \(1\le q<2\).

Combinatorics010102 general mathematicsMathematical analysisBanach space010103 numerical & computational mathematics0101 mathematicsAlgebra over a fieldLp space01 natural sciencesBohr radiusMathematics
researchProduct

Boundedness of composition operators in holomorphic Hölder type spaces

2021

Pure mathematicsComposition operatorGeneral MathematicsGeneral EngineeringHolomorphic functionType (model theory)Composition (combinatorics)Modulus of continuityMathematicsMathematical Methods in the Applied Sciences
researchProduct

(p,q)-Summing Sequences of Operators

2003

Abstract unavailable at this time... Mathematics Subject Classification (2000): 47B10. Key words: Summing operators, vector-valued multipliers. Quaestiones Mathematicae 26(2003), 441–452

AlgebraDiscrete mathematicsMathematics (miscellaneous)Mathematics Subject ClassificationKey (cryptography)MathematicsQuaestiones Mathematicae
researchProduct

Bloch functions on the unit ball of an infinite dimensional Hilbert space

2015

The Bloch space has been studied on the open unit disk of C and some ho- mogeneous domains of C n . We dene Bloch functions on the open unit ball of a Hilbert space E and prove that the corresponding space B(BE) is invariant under composition with the automorphisms of the ball, leading to a norm that- modulo the constant functions - is automorphism invariant as well. All bounded analytic functions on BE are also Bloch functions. ones, resulting the fact that if for a given n; the restrictions of the function to the n-dimensional subspaces have their Bloch norms uniformly bounded, then the function is a Bloch one and conversely. We also introduce an equivalent norm forB(BE) obtained by repla…

Unit sphereBloch spaceBloch sphereBounded functionMathematical analysisBloch functionUniform boundednessBall (mathematics)Infinite dimensional holomorphyAnalysisMathematicsAnalytic functionBloch wave
researchProduct