6533b7dbfe1ef96bd12712ad
RESEARCH PRODUCT
Hölder inequality for functions that are integrable with respect to bilinear maps
Oscar BlascoJ. M. Calabuigsubject
CombinatoricsHölder's inequalityGeneral MathematicsBounded functionMathematical analysisBanach spaceFunction (mathematics)Bilinear mapSpace (mathematics)OmegaMeasure (mathematics)Mathematicsdescription
Let $(\Omega, \Sigma, \mu)$ be a finite measure space, $1\le p<\infty$, $X$ be a Banach space $X$ and $B:X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p$-integrable with respect to $B$ whenever $\sup_{\|y\|=1} \int_\Omega \|B(f(w),y)\|^p\,d\mu<\infty$. We get an analogue to Hölder's inequality in this setting.
year | journal | country | edition | language |
---|---|---|---|---|
2008-03-01 | MATHEMATICA SCANDINAVICA |