6533b7dbfe1ef96bd1270842

RESEARCH PRODUCT

Bergman and Bloch spaces of vector-valued functions

José Luis ArreguiOscar Blasco

subject

Bloch spacePure mathematicsBergman spaceGeneral MathematicsBounded functionMathematical analysisBanach spaceInterpolation spaceSpace (mathematics)Bergman kernelReproducing kernel Hilbert spaceMathematics

description

We investigate Bergman and Bloch spaces of analytic vector-valued functions in the unit disc. We show how the Bergman projection from the Bochner-Lebesgue space Lp(, X) onto the Bergman space Bp(X) extends boundedly to the space of vector-valued measures of bounded p-variation Vp(X), using this fact to prove that the dual of Bp(X) is Bp(X*) for any complex Banach space X and 1 < p < ∞. As for p = 1 the dual is the Bloch space ℬ(X*). Furthermore we relate these spaces (via the Bergman kernel) with the classes of p-summing and positive p-summing operators, and we show in the same framework that Bp(X) is always complemented in p(X). (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

https://doi.org/10.1002/mana.200310109