0000000000376304

AUTHOR

José Luis Arregui

showing 5 related works from this author

Bergman and Bloch spaces of vector-valued functions

2003

We investigate Bergman and Bloch spaces of analytic vector-valued functions in the unit disc. We show how the Bergman projection from the Bochner-Lebesgue space Lp(, X) onto the Bergman space Bp(X) extends boundedly to the space of vector-valued measures of bounded p-variation Vp(X), using this fact to prove that the dual of Bp(X) is Bp(X*) for any complex Banach space X and 1 < p < ∞. As for p = 1 the dual is the Bloch space ℬ(X*). Furthermore we relate these spaces (via the Bergman kernel) with the classes of p-summing and positive p-summing operators, and we show in the same framework that Bp(X) is always complemented in p(X). (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Bloch spacePure mathematicsBergman spaceGeneral MathematicsBounded functionMathematical analysisBanach spaceInterpolation spaceSpace (mathematics)Bergman kernelReproducing kernel Hilbert spaceMathematicsMathematische Nachrichten
researchProduct

Multipliers on Vector Valued Bergman Spaces

2002

AbstractLet X be a complex Banach space and let Bp(X) denote the vector-valued Bergman space on the unit disc for 1 ≤ p &lt; ∞. A sequence (Tn)n of bounded operators between two Banach spaces X and Y defines a multiplier between Bp(X) and Bq(Y) (resp. Bp(X) and lq(Y)) if for any function we have that belongs to Bq(Y) (resp. (Tn(xn))n ∈ lq(Y)). Several results on these multipliers are obtained, some of them depending upon the Fourier or Rademacher type of the spaces X and Y. New properties defined by the vector-valued version of certain inequalities for Taylor coefficients of functions in Bp(X) are introduced.

Pure mathematicsSequenceGeneral Mathematics010102 general mathematicsBanach spaceFunction (mathematics)Type (model theory)01 natural sciencesMultiplier (Fourier analysis)Bergman spaceBounded function0103 physical sciences010307 mathematical physics0101 mathematicsUnit (ring theory)MathematicsCanadian Journal of Mathematics
researchProduct

Convolution of three functions by means of bilinear maps and applications

1999

When dealing with spaces of vector-valued analytic functions there is a natural way to understand multipliers between them. If X and Y are Banach spaces and L(X,Y ) stands for the space of linear and continuous operators we may consider the convolution of L(X,Y )-valued analytic functions, say F (z) = ∑ n=0∞ Tnz , and X-valued polynomials, say f(z) = ∑m n=0 xnz , to get the Y -valued function F ∗ f(z) = ∑ Tn(xn)z. The second author considered such a definition and studied multipliers between H(X) and BMOA(Y ) in [5]. When the functions take values in a Banach algebra A then the natural extension of multiplier is simply that if f(z) = ∑ anz n and g(z) = ∑ bnz , then f ∗ g(z) = ∑ an.bnz n whe…

Discrete mathematicsSymmetric bilinear formSesquilinear formGeneral MathematicsBanach spaceOrthogonal complementBilinear formMultiplier (Fourier analysis)46E40Tensor productInterpolation space46B2846G25MathematicsIllinois Journal of Mathematics
researchProduct

(p,q)-summing sequences

2002

Abstract A sequence (x j ) in a Banach space X is (p,q) -summing if for any weakly q -summable sequence (x j ∗ ) in the dual space we get a p -summable sequence of scalars (x j ∗ (x j )) . We consider the spaces formed by these sequences, relating them to the theory of (p,q) -summing operators. We give a characterization of the case p=1 in terms of integral operators, and show how these spaces are relevant for a general question on Banach spaces and their duals, in connection with Grothendieck theorem.

Discrete mathematicsSequenceFunctional analysisDual spaceApproximation propertyApplied MathematicsBanach spaceCharacterization (mathematics)BoundedCombinatoricsType and cotypeSequences in Banach spacesInterpolation spaceIntegral and (pq)-summing operatorsLp spaceGrothendieck theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

(p,q)-Summing Sequences of Operators

2003

Abstract unavailable at this time... Mathematics Subject Classification (2000): 47B10. Key words: Summing operators, vector-valued multipliers. Quaestiones Mathematicae 26(2003), 441–452

AlgebraDiscrete mathematicsMathematics (miscellaneous)Mathematics Subject ClassificationKey (cryptography)MathematicsQuaestiones Mathematicae
researchProduct