6533b831fe1ef96bd12983bf

RESEARCH PRODUCT

VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE

Pablo GregoriOscar Blasco

subject

Discrete mathematicsPure mathematicsSquare-integrable functionBergman spaceFunction spaceInfinite-dimensional vector functionBochner spaceLp spaceQuotient space (linear algebra)Complete metric spaceMathematics

description

Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the Kothe-Bochner function space defined as the set of measurable functions f : Ω → X such that the nonnegative functions ‖f‖X : Ω → [0,∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the pvariation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE(X) is then studied. It is shown, among other things and with some restriction of absolute continuity of the norms, that (E(X))∗ = VE′ (X ∗), that VE(X) can be identified with space of cone absolutely summing operators from E′ into X and that E(X) = VE(X) if and only if X has the RNP property.

https://doi.org/10.1142/9789812704450_0006