LORENTZ SPACES OF VECTOR-VALUED MEASURES
VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE
Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the Kothe-Bochner function space defined as the set of measurable functions f : Ω → X such that the nonnegative functions ‖f‖X : Ω → [0,∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the pvariation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE(X) is then studied. It is shown, among other things and with some restriction of absolute continuity of the norms, that (E(X))∗ = VE′ (X ∗), that VE(X) can be identified with space of cone absolutely summing operators fr…
Type and Cotype in Vector-Valued Nakano Sequence Spaces
AbstractGiven a sequence of Banach spaces {Xn}n and a sequence of real numbers {pn}n in [1,∞), the vector-valued Nakano sequence spaces ℓ({pn},{Xn}) consist of elements {xn}n in ∏nXn for which there is a constant λ>0 such that ∑n(‖xn‖/λ)pn<∞. In this paper we find the conditions on the Banach spaces Xn and on the sequence {pn}n for the spaces ℓ({pn},{Xn}) to have cotype q or type p.