Search results for "numerical"
showing 10 items of 2002 documents
Estimating Global Burden of Disease due to congenital anomaly: an analysis of European data
2017
ObjectiveTo validate the estimates of Global Burden of Disease (GBD) due to congenital anomaly for Europe by comparing infant mortality data collected by EUROCAT registries with the WHO Mortality Database, and by assessing the significance of stillbirths and terminations of pregnancy for fetal anomaly (TOPFA) in the interpretation of infant mortality statistics.Design, setting and outcome measuresEUROCAT is a network of congenital anomaly registries collecting data on live births, fetal deaths from 20 weeks’ gestation and TOPFA. Data from 29 registries in 19 countries were analysed for 2005–2009, and infant mortality (deaths of live births at age <1 year) compared with the WHO Mortality …
International prevalence and risk factors evaluation for drug-resistant Streptococcus pneumoniae pneumonia
2019
Objective: Streptococcus pneumoniae is the most frequent bacterial pathogen isolated in subjects with Community-acquired pneumonia (CAP) worldwide. Limited data are available regarding the current global burden and risk factors associated with drug-resistant Streptococcus pneumoniae (DRSP) in CAP subjects. We assessed the multinational prevalence and risk factors for DRSP-CAP in a multinational point-prevalence study. Design: The prevalence of DRSP-CAP was assessed by identification of DRSP in blood or respiratory samples among adults hospitalized with CAP in 54 countries. Prevalence and risk factors were compared among subjects that had microbiological testing and antibiotic susceptibility…
Diffusion through thin membranes: Modeling across scales
2016
From macroscopic to microscopic scales it is demonstrated that diffusion through membranes can be modeled using specific boundary conditions across them. The membranes are here considered thin in comparison to the overall size of the system. In a macroscopic scale the membrane is introduced as a transmission boundary condition, which enables an effective modeling of systems that involve multiple scales. In a mesoscopic scale, a numerical lattice-Boltzmann scheme with a partial-bounceback condition at the membrane is proposed and analyzed. It is shown that this mesoscopic approach provides a consistent approximation of the transmission boundary condition. Furthermore, analysis of the mesosco…
Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges
2017
The precise localization of nanometric objects in three dimensions is essential to identify functional diffusion mechanisms in complex systems at the cellular or molecular level. However, most optical methods can achieve high temporal resolution and high localization precision only in two dimensions or over a limited axial (z) range. Here we develop a novel wide-field detection system based on an electrically tunable lens that can track multiple individual nanoscale emitters in three dimensions over a tunable axial range with nanometric localization precision. The optical principle of the technique is based on the simultaneous acquisition of two images with an extended depth of field while …
Collective Cell Migration in a Fibrous Environment: A Hybrid Multiscale Modelling Approach
2021
International audience; The specific structure of the extracellular matrix (ECM), and in particular the density and orientation of collagen fibres, plays an important role in the evolution of solid cancers. While many experimental studies discussed the role of ECM in individual and collective cell migration, there are still unanswered questions about the impact of nonlocal cell sensing of other cells on the overall shape of tumour aggregation and its migration type. There are also unanswered questions about the migration and spread of tumour that arises at the boundary between different tissues with different collagen fibre orientations. To address these questions, in this study we develop …
A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion: The urokinase model
2016
In the present work we investigate a model that describes the chemotactically and proteolytically driven tissue invasion by cancer cells. The model is a system of advection-reaction-diffusion equations that takes into account the role of the serine protease urokinase-type plasminogen activator. The analytical and numerical study of such a system constitutes a challenge due to the merging, emerging, and traveling concentrations that the solutions exhibit. Classical numerical methods applied to this system necessitate very fine discretization grids to resolve these dynamics in an accurate way. To reduce the computational cost without sacrificing the accuracy of the solution, we apply adaptive…
GIS Infomobility for Travellers
2016
Geographical Information Systems (GIS) are essential systems to support decisions on territorial and environmental aspects. But they not always have been properly used for this purpose. Only in recent years GIS have been getting better used for the planning, management and control of the territory. The application of GIS to the transport sector has become relevant both for management and decision-making in support of Public Administration (PA) and citizens. GIS are particularly useful for roads and routing graphs management capabilities as well as for searching the most suitable path. The results achieved in this research activity aimed to evaluate different road graphs, proprietary and fre…
Packing colorings of subcubic outerplanar graphs
2018
Given a graph $G$ and a nondecreasing sequence $S=(s_1,\ldots,s_k)$ of positive integers, the mapping $c:V(G)\longrightarrow \{1,\ldots,k\}$ is called an $S$-packing coloring of $G$ if for any two distinct vertices $x$ and $y$ in $c^{-1}(i)$, the distance between $x$ and $y$ is greater than $s_i$. The smallest integer $k$ such that there exists a $(1,2,\ldots,k)$-packing coloring of a graph $G$ is called the packing chromatic number of $G$, denoted $\chi_{\rho}(G)$. The question of boundedness of the packing chromatic number in the class of subcubic (planar) graphs was investigated in several earlier papers; recently it was established that the invariant is unbounded in the class of all sub…
Rho resonance, timelike pion form factor, and implications for lattice studies of the hadronic vacuum polarization
2020
We study isospin-1 P-wave ππ scattering in lattice QCD with two flavors of O(a) improved Wilson fermions. For pion masses ranging from mπ=265 MeV to mπ=437 MeV, we determine the energy spectrum in the center-of-mass frame and in three moving frames. We obtain the scattering phase shifts using Lüscher’s finite-volume quantization condition. Fitting the dependence of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine the corresponding ρ mass mρ and gρππ coupling. By combining the scattering phase shifts with the decay matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare the results to the Gounaris-Sakurai repr…
A posteriori modelling-discretization error estimate for elliptic problems with L ∞-Coefficients
2017
We consider elliptic problems with complicated, discontinuous diffusion tensor A0. One of the standard approaches to numerically treat such problems is to simplify the coefficient by some approximation, say Aϵ, and to use standard finite elements. In [19] a combined modelling-discretization strategy has been proposed which estimates the discretization and modelling errors by a posteriori estimates of functional type. This strategy allows to balance these two errors in a problem adapted way. However, the estimate of the modelling error was derived under the assumption that the difference A0 - Aϵ becomes small with respect to the L∞-norm. This implies in particular that interfaces/discontinui…