6533b870fe1ef96bd12cfbc7

RESEARCH PRODUCT

Packing colorings of subcubic outerplanar graphs

Nicolas GastineauOlivier TogniBoštjan BrešarBoštjan Brešar

subject

05C15 05C12 05C70Applied MathematicsGeneral Mathematics010102 general mathematics010103 numerical & computational mathematics[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesGraph[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]Combinatorics[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]IntegerOuterplanar graphBounded function[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]FOS: MathematicsBipartite graphMathematics - CombinatoricsDiscrete Mathematics and CombinatoricsCombinatorics (math.CO)0101 mathematicsInvariant (mathematics)ComputingMilieux_MISCELLANEOUSMathematics

description

Given a graph $G$ and a nondecreasing sequence $S=(s_1,\ldots,s_k)$ of positive integers, the mapping $c:V(G)\longrightarrow \{1,\ldots,k\}$ is called an $S$-packing coloring of $G$ if for any two distinct vertices $x$ and $y$ in $c^{-1}(i)$, the distance between $x$ and $y$ is greater than $s_i$. The smallest integer $k$ such that there exists a $(1,2,\ldots,k)$-packing coloring of a graph $G$ is called the packing chromatic number of $G$, denoted $\chi_{\rho}(G)$. The question of boundedness of the packing chromatic number in the class of subcubic (planar) graphs was investigated in several earlier papers; recently it was established that the invariant is unbounded in the class of all subcubic graphs. In this paper, we prove that the packing chromatic number of any 2-connected bipartite subcubic outerplanar graph is bounded by $7$. Furthermore, we prove that every subcubic triangle-free outerplanar graph has a $(1,2,2,2)$-packing coloring, and that there exists a subcubic outerplanar graph with a triangle that does not admit a $(1,2,2,2)$-packing coloring. In addition, there exists a subcubic triangle-free outerplanar graph that does not admit a $(1,2,2,3)$-packing coloring. A similar dichotomy is shown for bipartite outerplanar graphs: every such graph admits an $S$-packing coloring for $S=(1,3,\ldots,3)$, where $3$ appears $\Delta$ times ($\Delta$ being the maximum degree of vertices), and this property does not hold if one of the integers $3$ is replaced by $4$ in the sequence $S$.

https://doi.org/10.1007/s00010-020-00721-6