Packing colorings of subcubic outerplanar graphs
Given a graph $G$ and a nondecreasing sequence $S=(s_1,\ldots,s_k)$ of positive integers, the mapping $c:V(G)\longrightarrow \{1,\ldots,k\}$ is called an $S$-packing coloring of $G$ if for any two distinct vertices $x$ and $y$ in $c^{-1}(i)$, the distance between $x$ and $y$ is greater than $s_i$. The smallest integer $k$ such that there exists a $(1,2,\ldots,k)$-packing coloring of a graph $G$ is called the packing chromatic number of $G$, denoted $\chi_{\rho}(G)$. The question of boundedness of the packing chromatic number in the class of subcubic (planar) graphs was investigated in several earlier papers; recently it was established that the invariant is unbounded in the class of all sub…