Search results for "nutrient removal"
showing 10 items of 22 documents
Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition.
2018
[EN] The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae¿bacteria culture and their effects on the microalgae¿bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125¿µE¿m¿2¿s¿1. Other two experiments were carried out at variable temperatures: 23¿±¿2°C and 28¿±¿2°C at light intensity of 85 and 125¿µE¿m¿2¿s¿1, respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85¿125¿µE¿…
Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous
2020
Abstract Microalgae have promising applications in wastewater treatment because of their ability to use inorganic compounds such as nitrates and phosphates as nutrients for their growth. Microalgae are applied to the secondary and tertiary bio-treatment with two benefits: i) pollutants removal from wastewater; ii) production of microalgal biomass, that can be exploited as a source of biomass and biomolecules. In the present work, four different microalgal strains (two from culture collections and two isolated from Sicilian littoral) were tested in municipal sewage bioremediation. The sewage of a municipal plant, already processed with primary treatment, was used for the cultivation of micro…
UCT-MBR vs IFAS-UCT-MBR for Wastewater Treatment: A Comprehensive Comparison Including N2O Emission
2017
In this study the performance (in terms of carbon and nutrient removal) and N2O emission of two plant configurations adopting innovative technologies were investigated. With this regards, an University Cape Town (UCT) membrane bioreactor (MBR) plant and an Integrated Fixed Film Activated Sludge (IFAS) -UCT-MBR plant were monitored. Both plants treat real wastewater under two different values of the influent carbon nitrogen ratio (C/N = 5 mgCOD/mgN and C/N = 10 mgCOD/mgN). Results have shown the highest carbon and nutrients removal efficiencies for the IFAS-UCT-MBR configuration during both the two investigated C/N values. Furthermore, the lowest N2O emission occurred for the IFAS-UCT-MBR.
Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent
2012
This study investigated the removal of nitrogen and phosphorus from the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) by means of a lab-scale photobioreactor in which algae biomass was cultured in a semi-continuous mode for a period of 42 days. Solids retention time was 2 days and a stable pH value in the system was maintained by adding CO2. Nitrogen and phosphorus concentrations in the SAnMBR effluent fluctuated according to the operating performance of the bioreactor and the properties of its actual wastewater load. Despite these variations, the anaerobic effluent proved to be a suitable growth medium for microalgae (mean biomass productivity was 234 mgl(-1) d(-1)), achie…
Integrated Fixed Film Activated Sludge (IFAS) membrane BioReactor: The influence of the operational parameters
2020
Abstract The present paper investigated an Integrated Fixed Film Activated Sludge (IFAS) Membrane BioReactor (MBR) system monitored for 340 days. In particular, the short-term effects of some operational parameters variation was evaluated. Results showed a decrease of the removal rates under low C/N values. Respirometry results highlighted that activated sludge was more active in the organic carbon removal. Conversely, biofilm has a key role during nitrification. The major fouling mechanism was represented by the cake deposition (irreversible).
A moving bed membrane bioreactor pilot plant for carbon and nutrient removal
2016
The paper reports the main results of an experimental gathering campaign carried out on a moving bed membrane bioreactor pilot plant conceived for carbon and nutrients removal according to a University of Cape Town scheme. Organic carbon, nitrogen and phosphorus removal, biokinetic/stoichiometric constants, membrane fouling tendency and sludge dewaterability have been assessed during experiments. The achieved results showed that pilot plant was able to guarantee very high carbon removal, with average efficiency of 98%. In terms of nitrification, the system showed an excellent performance, with efficiencies higher than 98% for most of the experiments. This result might be related to the pres…
The role of eutrophication reduction of two small man-made Mediterranean lagoons in the context of a broader remediation system: Effects on water qua…
2013
In order to meet the requirements of the European Union Water Framework Directive for the Albufera de Valencia (AV) Natural Park, in 2009, several areas of free water surface constructed wetlands (FWSCWs) planted with emergent vegetation and two small shallow lagoons planted with submerged macrophytes were created over a 40-ha area formerly occupied by rice fields. This area is currently a reserve known as Tancat de la Pipa. The dual goal of this programme was to improve the quality of the hyper-eutrophicated waters of the AV lagoon, the largest littoral lagoon in the Iberian Peninsula, and to restore former lost habitats to increase the biodiversity of the area. The lagoons were mainly fed…
Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration
2013
Simultaneous nitrification and denitrification (SND) together with organic removal in granules is usually carried out without Dissolved Oxygen (DO) concentration control, at ‘‘low DO’’ (with a DO 7–8 mg/L, during feast and famine conditions respectively). In particular, different strategies of cultivation and several organic and nitrogen loading rate have been applied, in order to eval- uate the efficiencies in SND process without dissolved oxygen control. The results show that, even under conditions of high DO concentration, nitrogen and organic matter can be simultaneously removed, with efficiency >90%. Nevertheless, the biological conditions in the inner layer of the granule may change sig- …
Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed w…
2016
[EN] With the aim of assessing the potential of microalgae cultivation for water resource recovery (WRR), the performance of three 0.55 m3 flat-plate photobioreactors (PBRs) was evaluated in terms of nutrient removal rate (NRR) and biomass production. The PBRs were operated outdoor (at ambient temperature and light intensity) using as growth media the nutrient-rich effluent from an AnMBR fed with pre-treated sewage. Solar irradiance was the most determining factor affecting NRR. Biomass productivity was significantly affected by temperatures below 20 °C. The maximum biomass productivity (52.3 mg VSS·L−1·d−1) and NRR (5.84 mg NH4-N·L−1·d−1 and 0.85 mg PO4-P·L−1·…
Solids and Hydraulic Retention Time Effect on N2O Emission from Moving-Bed Membrane Bioreactors
2018
Biological nutrient removal was operated at different solids (SRT) and hydraulic retention times (HRT) in order to assess their influence on nitrous oxide (N2O) emission from a hybrid moving-bed membrane bioreactor. The observed results show that the N2O production decreased when the SRT/HRT was decreased. The maximum N2O gaseous concentration was measured in the aerobic reactor at the end of phase I, and it decreased through phases II and III. From mass balances over the reactors of the system, the aerated (aerobic and membrane) reactors were the largest producers of N2O, showing that the greater part of N2O was produced during the nitrification process.