6533b82efe1ef96bd12928a3
RESEARCH PRODUCT
Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent
Aurora SecoJosé FerrerInmaculada RomeroN. Martin GarciaA. Ruiz-martinezsubject
ChlorophyllEnvironmental EngineeringNitrogenchemistry.chemical_elementBiomassPhotobioreactorBioengineeringCell CountPilot ProjectsWastewaterWaste Disposal Fluidchemistry.chemical_compoundPhotobioreactorsBioreactorsNutrient removalBioreactorMicroalgaeAmmoniumAnaerobiosisBiomassWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTESubmerged anaerobic membrane bioreactorRenewable Energy Sustainability and the EnvironmentChemistryPhosphorusChlorophyll AEnvironmental engineeringMembranes ArtificialPhosphorusGeneral MedicinePulp and paper industryPhosphateWastewaterSolubilitydescription
This study investigated the removal of nitrogen and phosphorus from the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) by means of a lab-scale photobioreactor in which algae biomass was cultured in a semi-continuous mode for a period of 42 days. Solids retention time was 2 days and a stable pH value in the system was maintained by adding CO2. Nitrogen and phosphorus concentrations in the SAnMBR effluent fluctuated according to the operating performance of the bioreactor and the properties of its actual wastewater load. Despite these variations, the anaerobic effluent proved to be a suitable growth medium for microalgae (mean biomass productivity was 234 mgl(-1) d(-1)), achieving a nutrient removal efficiency of 67.2% for ammonium (NH4+-N) and 97.8% for phosphate (PO4-3-P). When conditions were optimum, excellent water quality with very low ammonium and phosphate concentrations was obtained.
year | journal | country | edition | language |
---|---|---|---|---|
2012-12-01 |