Search results for "olfactory"
showing 10 items of 319 documents
Brain size and limits to adult neurogenesis
2015
The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates t…
Odor-induced electrical and calcium signals from olfactory sensory neurons in situ
2018
Electrophysiological recording and optical imaging enable the characterization of membrane and odorant response properties of olfactory sensory neurons (OSNs) in the nasal neuroepithelium. Here we describe a method to record the responses of mammalian OSNs to odorant stimulations in an ex vivo preparation of intact olfactory epithelium. The responses of individual OSNs with defined odorant receptor types can be monitored via patch-clamp recording or calcium imaging.
Telencephalic-olfactory bulb ventricle wall organization in Austrolebias charrua: Cytoarchitecture, proliferation dynamics, neurogenesis and migratio…
2016
Adult neurogenesis participates in fish olfaction sensitivity in response to environmental challenges. Therefore, we investigated if several populations of stem/progenitor cells that are retained in the olfactory bulbs (OB) may constitute different neurogenic niches that support growth and functional demands. By electron microscopy and combination cell proliferation and lineage markers, we found that the telencephalic ventricle wall (VW) at OB level of Austrolebias charrua fish presents three neurogenic niches (transitional 1, medial 2 and ventral 3). The main cellular types described in other vertebrate neurogenic niches were identified (transient amplifying cells, stem cells and migrating…
Impact of the Usher syndrome on olfaction
2015
Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram re…
Hypocellularity in the murine model for Down Syndrome Ts65Dn is not affected by adult neurogenesis
2016
Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity …
Characterization and isolation of immature neurons of the adult mouse piriform cortex
2015
Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA-NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitiona…
Glutamate and opioid antagonists modulate dopamine levels evoked by innately attractive male chemosignals in the nucleus accumbens of female rats
2017
Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist b-funaltrexamine into the posterior ventral tegmental area does no…
Odorant Metabolism Analysis by an Automated Ex Vivo Headspace Gas-Chromatography Method
2015
International audience; In the olfactory epithelium (OE), odorant metabolizing enzymes have the dual function of volatile component detoxification and active clearance of odorants from the perireceptor environment to respectively maintain the integrity of the tissues and the sensitivity of the detection. Although emphasized by recent studies, this enzymatic mechanism is poorly documented in mammals. Thus, olfactory metabolism has been characterized mainly in vitro and for a limited number of odorants. The automated ex vivo headspace gas-chromatography method that was developed here was validated to account for odorant olfactory metabolism. This method easily permits the measurement of the f…
Chemical Profiles of Integumentary and Glandular Substrates in Australian Sea Lion Pups ( Neophoca cinerea )
2019
International audience; Recognition of individuals or classes of individuals plays an important role in the communication systems of many mammals. The ability of otariid (i.e., fur seal and sea lion) females to locate and identify their offspring in colonies after returning from regular foraging trips is essential to successful pup rearing. It has been shown that olfaction is used to confirm the identity of the pup by the mother when they reunite, yet the processes by which this chemical recognition occurs remain unclear. Using gas chromatography-mass spectrometry, we examined chemical profiles of integumentary and glandular secretions/excretions from pre- and post-molt Australian sea lion …
Occurrence of new neurons in the piriform cortex
2015
In a recent mini-review (Yuan et al., 2015), support is given to the idea that neurons are generated during adulthood in the mammalian piriform cortex (PC), their periventricular origin being also discussed. It is known since long time that a subpopulation of cortical layer II cells in the adult PC of rodents express immature neuronal markers such as polysialylated NCAM (PSA-NCAM; Seki and Arai, 1991; Bonfanti et al., 1992) and doublecortin (DCX; Nacher et al., 2002). These immature neurons have been found in most mammals studied so far, their occurrence being restricted to the paleocortex in rodents (Seki and Arai, 1991; Bonfanti et al., 1992; Nacher et al., 2002), and extended to neocorti…