Search results for "open quantum system"
showing 10 items of 190 documents
Collective decoherence of cold atoms coupled to a Bose-Einstein condensate
2009
We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system…
Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide
2018
We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to discuss the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit …
Enabling quantum non-Markovian dynamics by injection of classical colored noise
2017
The non-Markovian nature of quantum systems recently turned to be a key subject for investigations on open quantum system dynamics. Many studies, from its theoretical grounding to its usefulness as a resource for quantum information processing and experimental demonstrations, have been reported in the literature. Typically, in these studies, a structured reservoir is required to make non-Markovian dynamics emerge. Here, we investigate the dynamics of a qubit interacting with a bosonic bath and under the injection of a classical stochastic colored noise. A canonical Lindblad-like master equation for the system is derived by using the stochastic wave function formalism. Then, the non-Markovia…
Holonomic Quantum Computation
2008
In this brief review we describe the idea of holonomic quantum computation. The idea of geometric phase and holonomy is introduced in a general way and we provide few examples that should help the reader understand the issues involved.
Quantum annealing with manufactured spins.
2011
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. Johnson et al. use quantum annealing to find the ground state of an artificial Ising spin system comprised of an array of eight superconducting flux qubits with programmable spin–spin couplings. With an increased number of spins, the system may provide a practical physical means to implement quantum algorithms, possibly enabling more effective approaches towards solving certain classes of hard combinatorial…
Quantum Control in Atomic Systems
1999
We review a series of recent experiments demonstrating quantum control of atomic processes and products induced by the interaction of the atom with coherent bichromatic electromagnetic fields. Since the effects under consideration are electromagnetically induced, control is established through the field parameters i.e. frequency, amplitude and phase. The controlled processes include resonant and non resonant multiphoton ionization, autoionization, radiative decay in multiple continua (ionization branching ratios) and third harmonic generation.
Temperature effects on quantum non-Markovianity via collision models
2018
Quantum non-Markovianity represents memory during the system dynamics, which is typically weakened by the temperature. We here study the effects of environmental temperature on the non-Markovianity of an open quantum system by virtue of collision models. The environment is simulated by a chain of ancillary qubits that are prepared in thermal states with a finite temperature $T$. Two distinct non-Markovian mechanisms are considered via two types of collision models, one where the system $S$ consecutively interacts with the ancillas and a second where $S$ collides only with an intermediate system $S'$ which in turn interacts with the ancillas. We show that in both models the relation between …
Partitioning of on-demand electron pairs
2014
The on-demand generation and separation of entangled photon pairs are key components of quantum information processing in quantum optics. In an electronic analogue, the decomposition of electron pairs represents an essential building block for using the quantum state of ballistic electrons in electron quantum optics. The scattering of electrons has been used to probe the particle statistics of stochastic sources in Hanbury Brown and Twiss experiments and the recent advent of on-demand sources further offers the possibility to achieve indistinguishability between multiple sources in Hong-Ou-Mandel experiments. Cooper pairs impinging stochastically at a mesoscopic beamsplitter have been succe…
On-chip generation of high-dimensional entangled quantum states and their coherent control
2017
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the co…
Quantum light depolarization: the phase-space perspective
2008
Quantum light depolarization is handled through a master equation obtained by coupling dispersively the field to a randomly distributed atomic reservoir. This master equation is solved by transforming it into a quasiprobability distribution in phase space and the quasiclassical limit is investigated.