Search results for "open quantum system"

showing 10 items of 190 documents

System-environment correlations and Markovian embedding of quantum non-Markovian dynamics

2018

We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed "ancillas", which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of "memory depth" where these correlations are established between the syste…

Physics---Quantum PhysicsProcess (computing)Markov processFOS: Physical sciences01 natural sciencesUnitary stateSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasRendering (computer graphics)open quantum systems non markovianitysymbols.namesakeHeat flux0103 physical sciencessymbolsQuantum systemEmbeddingStatistical physics010306 general physicsQuantum Physics (quant-ph)Quantum
researchProduct

Anti-Zeno-based dynamical control of the unfolding of quantum Darwinism

2020

We combine the collisional picture for open system dynamics and the control of the rate of decoherence provided by the quantum (anti-)Zeno effect to illustrate the temporal unfolding of the redundant encoding of information into a multipartite environment that is at the basis of Quantum Darwinism, and to control it. The rate at which such encoding occurs can be enhanced or suppressed by tuning the dynamical conditions of system-environment interaction in a suitable and remarkably simple manner. This would help the design of a new generation of quantum experiments addressing the elusive phenomenology of Quantum Darwinism and thus its characterization.

Physics---Quantum PhysicsQuantum decoherenceFOS: Physical sciencesPhysics and Astronomy(all)Quantum DarwinismOpen system (systems theory)Settore FIS/03 - Fisica Della MateriaMultipartiteopen quantum system quantum darwinism collision models zeno effectClassical mechanics/dk/atira/pure/subjectarea/asjc/3100Zeno's paradoxesQuantum Physics (quant-ph)Phenomenology (particle physics)QuantumQuantum Zeno effect
researchProduct

Composite quantum collision models

2017

A collision model (CM) is a framework to describe open quantum dynamics. In its {\it memoryless} version, it models the reservoir $\mathcal R$ as consisting of a large collection of elementary ancillas: the dynamics of the open system $\mathcal{S}$ results from successive "collisions" of $\mathcal{S}$ with the ancillas of $\mathcal R$. Here, we present a general formulation of memoryless {\it composite} CMs, where $\mathcal S$ is partitioned into the very open system under study $S$ coupled to one or more auxiliary systems $\{S_i\}$. Their composite dynamics occurs through internal $S$-$\{S_i\}$ collisions interspersed with external ones involving $\{S_i\}$ and the reservoir $\mathcal R$. W…

Physics---Quantum geometryQuantum PhysicsQuantum dynamicsFOS: Physical sciencesQuantum simulatorSpectral density01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasQuantization (physics)Open quantum systemQuantum mechanicsQubit0103 physical sciencesAtomic and Molecular Physics and Optics open quantum system dynamicsQuantum Physics (quant-ph)010306 general physicsQuantum dissipationPhysical Review A
researchProduct

An optimized Bell test in a dynamical system

2010

The best realization of a Bell test depends on parameters linked to experimental settings. We report, for a class of two-qubit states, some optimized parameters that are useful to perform an optimized Bell test in a dynamical context. The time evolution of these optimized parameters, that present finite jumps, is investigated for two qubits in separated cavities.

PhysicsBell stateSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciGeneral Physics and AstronomyContext (language use)Quantum PhysicsQuantum entanglementBell testClassical mechanicsLocal hidden variable theoryOpen quantum systemNonlocalityBell test experimentsStatistical physicsGHZ experimentRealization (systems)Quantum teleportationPhysics Letters A
researchProduct

Collective decoherence of cold atoms coupled to a Bose-Einstein condensate

2009

We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum decoherenceDephasingDegenerate energy levelsTime evolutionGeneral Physics and AstronomyFOS: Physical sciencesBose Einstein condensates open quantum systems quantum information theoryCondensed Matter::Mesoscopic Systems and Quantum Hall Effectddc:law.inventionlawQuantum Gases (cond-mat.quant-gas)Quantum mechanicsMaster equationCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Bose–Einstein condensateBosonCoherence (physics)
researchProduct

A quantum random walk of a Bose-Einstein condensate in momentum space

2016

Each step in a quantum random walk is typically understood to have two basic components: a ``coin toss'' which produces a random superposition of two states, and a displacement which moves each component of the superposition by different amounts. Here we suggest the realization of a walk in momentum space with a spinor Bose-Einstein condensate subject to a quantum ratchet realized with a pulsed, off-resonant optical lattice. By an appropriate choice of the lattice detuning, we show how the atomic momentum can be entangled with the internal spin states of the atoms. For the coin toss, we propose to use a microwave pulse to mix these internal states. We present experimental results showing an…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum dynamicsQuantum simulatorFOS: Physical sciencesNonlinear Sciences - Chaotic Dynamics01 natural sciences010305 fluids & plasmasOpen quantum systemQuantum error correctionQuantum Gases (cond-mat.quant-gas)QubitQuantum mechanicsQuantum process0103 physical sciencesQuantum algorithmQuantum walkChaotic Dynamics (nlin.CD)010306 general physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)
researchProduct

Robust non-Markovianity in ultracold gases

2012

We study the effect of thermal fluctuations on a probe qubit interacting with a Bose-Einstein condensed (BEC) reservoir. The zero-temperature case was studied in [Haikka P et al 2011 Phys. Rev. A 84 031602], where we proposed a method to probe the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. Here we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.

PhysicsCondensed Matter::Quantum GasesWork (thermodynamics)Quantum PhysicsCold Atoms Open Quantum System Markovian Master equations/dk/atira/pure/subjectarea/asjc/3100/3107/dk/atira/pure/subjectarea/asjc/3100/3104Thermal fluctuationsFOS: Physical sciencesScattering lengthPhysics and Astronomy(all)Condensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Optics/dk/atira/pure/subjectarea/asjc/3100Quantum Gases (cond-mat.quant-gas)Quantum mechanicsQubitThermalSensitivity (control systems)Condensed Matter - Quantum Gases/dk/atira/pure/subjectarea/asjc/2600/2610Quantum Physics (quant-ph)Mathematical PhysicsCurse of dimensionality
researchProduct

Numerical simulation of free dissipative open quantum system and establishment of a formula for π

2020

We transform the system/reservoir coupling model into a one-dimensional semi-infinite discrete chain with nearest neighbor interaction through a unitary transformation, and, simulate the dynamics of free dissipative open quantum system. We investigate the consequences of such modeling, which is observed as finite size effect causing the recurrence of particle from the end of the chain. Afterwards, we determine a formula for π in terms of the matrix operational form, which indicates a robustness of the connection between quantum physics and basic mathematics. peerReviewed

PhysicsCouplingComputer simulationUnitary transformationk-nearest neighbors algorithmtiiviin aineen fysiikkaOpen quantum systemMatrix (mathematics)Classical mechanicscondensed matter physicsChain (algebraic topology)Dissipative systemsimulointikvanttifysiikka
researchProduct

Quantumness and memory of one qubit in a dissipative cavity under classical control

2019

Hybrid quantum-classical systems constitute a promising architecture for useful control strategies of quantum systems by means of a classical device. Here we provide a comprehensive study of the dynamics of various manifestations of quantumness with memory effects, identified by non-Markovianity, for a qubit controlled by a classical field and embedded in a leaky cavity. We consider both Leggett-Garg inequality and quantum witness as experimentally-friendly indicators of quantumness, also studying the geometric phase of the evolved (noisy) quantum state. We show that, under resonant qubit-classical field interaction, a stronger coupling to the classical control leads to enhancement of quant…

PhysicsCouplingQuantum PhysicsField (physics)010308 nuclear & particles physicsNon-MarkovianityFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesSettore FIS/03 - Fisica Della MateriaGeometric phaseQuantum stateOpen quantum systemQuantum mechanicsQubit0103 physical sciencesDissipative systemQuantum informationQuantum witnessQuantum Physics (quant-ph)010306 general physicsClassical controlQuantumLeggett–Garg inequalityAnnals of Physics
researchProduct

Transitionless quantum driving in open quantum systems

2014

Abstract We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators.

PhysicsDDC 530 / PhysicsGeneral Physics and Astronomyquantum control; quantum open system; superadiabatic dynamics; Physics and Astronomy (all)Physics and Astronomy(all)Settore FIS/03 - Fisica Della Materiasuperadiabatic dynamicsQuantum SystemsPhysics and Astronomy (all)Formalism (philosophy of mathematics)Classical mechanics/dk/atira/pure/subjectarea/asjc/3100quantum open systemMaster equationtransitionless quantum driving adiabatic theorem optima control open quantum systemddc:530quantum controlQuantumQuantenmechanisches System
researchProduct