Search results for "opolymerization"

showing 10 items of 56 documents

Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine

2011

International audience; Previous publication of the authors presented evidences that electroch emical oxidation of Mg(II) porphine (fully unsubstituted porphyrin, MgP) in acetonitrile (AN) at a very low potential leads to deposition of films at electrode surface corresponding to typical electroactive polymers, with their reversible transition betwee n the electronconducting and insulating states depending on the electrode potential/oxidation level ("film of type I"). It is demonstrated in the actual publication that these films in contact with a monomer-free solution are subject to an irreversible transformation to quite a different material ("film of type II") under the influence of a high…

General Chemical EngineeringAnalytical chemistryInfrared spectroscopy02 engineering and technology010402 general chemistryElectrochemistry01 natural scienceschemistry.chemical_compoundTransition metalX-ray photoelectron spectroscopy[CHIM.ANAL]Chemical Sciences/Analytical chemistryelectroactive materialsElectrochemistryMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryconducting polymermagnesium porphineConductive polymer[CHIM.ORGA]Chemical Sciences/Organic chemistryelectropolymerization[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMonomerchemistryPhysical chemistryC-C coupling0210 nano-technologyunsubstituted porphyrinElectrode potentialElectrochimica Acta
researchProduct

Synthèse et formulation de résines photopolymérisables issues de la biomasse : application pour l'impression Braille

2014

The work of the PhD deals with the synthesis of polymerizable monomers derived from biomass, the study of their photopolymerization and the characterization of the resulting materials. The formulated monomers were tested in a printing method of Braille characters.The monomers were prepared in a two-steps reaction that is simple, economic and environmentally friendly. The first step comprised a reaction between glycerol derivatives (glycerol carbonate or glycidol) and fatty acids. In the second step, the obtained [alpha]-monoglycerides were functionalized to obtain photopolymerizable monomers. The different obtained monomers that bear (meth)acrylate and/or epoxy groups were photopolymerized …

Glycerol[CHIM.POLY] Chemical Sciences/PolymersPhotopolymerization[alpha]-monoglyceridesGlycerol carbonate[ CHIM.POLY ] Chemical Sciences/PolymersAcides gras[CHIM.POLY]Chemical Sciences/PolymersÉpoxyGlycidolBiomasseCarbonate de glycérol(méth)acrylateBiomassBrailleFatty acidsPhotopolymérisation
researchProduct

Undecylenic acid: A tunable bio-based synthon for materials applications

2016

International audience; An undecylenic acid-based monoglyceride prepared from glycidol and undecylenic acid is used as suitable and tunable synthon for polymerization applications. Epoxidation and acrylation reactions lead to photopolymerizable monomers while transesterification with dimethyl carbonate, metathesis and aminolysis reactions provide access to polyhydroxyurethane-based materials. The successive intermediates were synthesized according to a green chemistry approach implicating solvent-less and catalyzed reactions, and were at each step fully characterized by infrared, 1H and 13C{1H} NMR spectroscopy, elemental analysis and mass spectrometry. Analyses of the resulting polymer mat…

Green chemistryThermogravimetric analysisRenewable resourcesMaterials sciencePolymers and PlasticsOrganic carbonatepolyhydroxyurethanespolyurethanesGeneral Physics and Astronomy02 engineering and technologycyclic carbonates010402 general chemistry01 natural sciences[ CHIM ] Chemical Scienceschemistry.chemical_compoundPolyhydroxyurethanes (PHUs)Aminolysisrenewable building-blockPolymer chemistryMaterials ChemistrymedicineOrganic chemistry[CHIM]Chemical Sciencessolvent-free conditionscastor-oilglycerol carbonatePhotopolymerizationOrganic ChemistrySynthonGlycidolTransesterification021001 nanoscience & nanotechnologyFatty acid0104 chemical scienceschemistryPolymerizationGlycidolpolycarbonatespolymerizationUndecylenic acidderivatives0210 nano-technologymedicine.drug
researchProduct

Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres

2009

A facile and reproducible one-step pathway has been developed for preparing ordered arrays of mesoporous carbon nanostructures within the pores of anodized aluminium oxide (AAO) membranes, through the confined self-assembly of phenol/formaldehyde resol and amphiphilic copolymer templates. The morphology of the mesoporous carbon nanostructures can be controlled by varying the copolymer surfactant, the quantity of the resol–surfactant precursor sol used and the amount of phenol–formaldehyde resol introduced into the resol–surfactant sol. One-dimensional (1-D) carbon nanostructures, such as carbon fibres with a core–shell structure and carbon ribbons with circular mesopores running parallel to…

Materials scienceAnodic oxidationPolymersCarbon nanofiberNanotechnologyGeneral ChemistryConductive atomic force microscopySurface active agentsPhenolic resinsNanostructuresTemplate reactionMembraneCarbon nanofibersPhenolsCopolymerizationSolsNanofiberCarbon fibersMaterials ChemistryCopolymerCarbide-derived carbonMesoporous materialJournal of Materials Chemistry
researchProduct

Ethylene/POSS copolymerization behavior of postmetallocene catalysts and copolymer characteristics

2017

Copolymerization of ethylene with iso-butyl substituted monoalkenyl(siloxy)- or monoalkenylsilsesquioxane (POSS) comonomers over bis(phenoxy-imine) and salen-type titanium and zirconium catalysts was studied. It was found that the polyreaction performance was significantly depended by the kind of the catalyst and by the structure and concentration of POSS in the feed. The POSS comonomer was efficiently incorporated into the polymer chain at up to 0.2 mol %. The differences in the copolymer compositions as the functions of the catalyst kind and the POSS comonomer were observed, including the varied number-average sequence length of ethylene and unsaturated end groups, as determined by 1H NMR…

Materials scienceEthylenePolymers and Plasticspolyhedral oligomeric silsesquiox-ane (POSS)02 engineering and technology010402 general chemistry01 natural sciencesCatalysislaw.inventionchemistry.chemical_compoundCrystallinitylawPolymer chemistryMaterials ChemistryCopolymerThermal stabilitystructureCrystallizationchemistry.chemical_classificationComonomerOrganic ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical sciencescopolymerizationpostmetallocene catalystchemistry0210 nano-technologythermoplasticsJournal of Polymer Science Part A-Polymer Chemistry
researchProduct

Organic-inorganic materials through first simultaneous frontal polymerization and frontal geopolymerization

2021

Abstract The first frontal geopolymerization (FGP) took place in the same reaction medium in which the frontal polymerization (FP) of 1,6-hexanediol diacrylate (HDDA) was occurring, thus giving rise to an organic-inorganic hybrid in one step in just a few minutes. Because of their exothermicity, the two reactions support each other and sustain propagating fronts. By contrast, using the classical techniques (prolonged heating) instead of FP, due to large gas formation, the reaction is explosive or, if carried out at room temperature, phase separation occurred.

Materials scienceExplosive materialMechanical EngineeringFrontal polymerizationOne-Step02 engineering and technologyGeopolymer; Frontal polymerization; Frontal geopolymerization; HybridGeopolymer010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsFrontal geopolymerization01 natural sciencesHybrid0104 chemical sciencesGeopolymerFrontal geopolymerization; Frontal polymerization; Geopolymer; HybridPolymerizationGas formationChemical engineeringMechanics of MaterialsOrganic inorganicGeneral Materials Science0210 nano-technologyMaterials Letters
researchProduct

Electrochemical Fabrication and Physicochemical Characterization of Metal/High-k Insulating Oxide/Polymer/Electrolyte Junctions

2014

Photoelectrochemical polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, was successfully realized on anodic film grown to 50 V on magnetron sputtered Ti-6 atom % Si alloys. Scanning electron microscopy allowed us to evidence formation of compact and uniform polymer layers on the oxide surface. Photoelectrochemical and impedance measurements showed that photopolymerization allows one to grow PEDOT in its conducting state, while a strong cathodic polarization is necessary to bring the polymer in its p-type semiconducting state. Information on the optical and electrical properties of metal/oxide/polymer/electrolyte junctions proves that PEDOT has promising performance as an electrolyte…

Materials scienceFabricationElectrochemical fabricationInorganic chemistryImpedance measurementOxidePhysico-chemical characterizationPoly-3 4-ethylenedioxythiopheneElectrolyteElectrochemistrySettore ING-INF/01 - ElettronicaPhotoelectrochemistrychemistry.chemical_compoundPEDOT:PSSPhysical and Theoretical ChemistryConducting statechemistry.chemical_classificationPhotopolymerizationCathodic polarizationPolymerSilicon alloySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptical and electrical propertieSettore ING-IND/23 - Chimica Fisica ApplicataGeneral EnergychemistryPolymerizationCavity magnetronLithium IntercalationTitanium alloyScanning electron microscopyThe Journal of Physical Chemistry C
researchProduct

Quantitative analysis of localized surface plasmons based on molecular probing

2010

International audience; We report on the quantitative characterization of the plasmonic optical near-field of a single silver nanoparticle. Our approach relies on nanoscale molecular molding of the confined electromagnetic field by photoactivated molecules. We were able to directly image the dipolar profile of the near-field distribution with a resolution better than 10 nm and to quantify the near-field depth and its enhancement factor. A single nanoparticle spectral signature was also assessed. This quantitative characterization constitutes a prerequisite for developing nanophotonic applications.

Materials scienceNanophotonicsGeneral Physics and AstronomyNanoparticlePhysics::OpticsNanotechnologynanoscale photopolymerization02 engineering and technology010402 general chemistry01 natural sciencesSilver nanoparticlenear-field opticsGeneral Materials Sciencemolecular probesPlasmonComputingMilieux_MISCELLANEOUSSpectral signaturelocalized surface plasmonquantitative analysisNear-field opticsGeneral Engineering[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)[ CHIM.POLY ] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/Polymers[ CHIM.MATE ] Chemical Sciences/Material chemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologyLocalized surface plasmon
researchProduct

The rate of polymerization in two loci reaction systems: VDF-HFP precipitation copolymerization in supercritical carbon dioxide

2011

When the copolymerization of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) is carried out in supercritical carbon dioxide (scCO 2) under heterogeneous conditions, the reaction occurs both in the continuous CO 2-rich phase and in the dispersed polymer-rich phase. The two phases being characterized by different values of reactant concentrations and kinetic parameters, one would expect that the reaction kinetics is affected by the polymer phase holdup in the reactor. However, the reaction rate is almost insensitive to the amount of produced polymer, at least at specific reaction conditions. This apparent contradiction is discussed and clarified in this paper by a series of comparativ…

Materials sciencePolymers and PlasticsRich phaseChemical kineticsReaction ratechemistry.chemical_compoundSupercritical carbon dioxideCopolymerCopolymerizationPhase (matter)Single phasePolymer chemistryMaterials ChemistryCopolymerHeterogeneous conditionPolymerRate of polymerizationReaction systemchemistry.chemical_classificationSupercritical carbon dioxideHexafluoropropyleneExperimental investigationComparative simulationGeneral ChemistryPolymerComputer simulationReaction rates Supercritical fluid extractionReactant concentrationchemistryPolymerizationChemical engineeringReaction conditionVinylidene fluoride Carbon dioxideHeterogeneous polymerizationHexafluoropropylenePolymer phasePolymer Engineering & Science
researchProduct

Copolymers of ethylene with monoalkenyl- and monoalkenyl(siloxy)silsesquioxane (POSS) comonomers – Synthesis and characterization

2017

Abstract The hybrid ethylene/POSS copolymers were obtained using the rac -Et(Ind) 2 ZrCl 2 catalyst activated by MAO. A series of monoalkenyl- and monoalkenyl(siloxy)silsesquioxanes derivatives with different structures of reactive alkenyl substituent and types of non-reactive groups attached to the T 8 POSS cage was used as comonomers. The kind and concentration of the POSS comonomer in the reaction feed as well as extended reaction time were found to strongly influence the catalyst efficiency and incorporation of POSS units into polymer chains. The comonomer reactivity was significantly dependent on the length of the alkenyl reactive substituent in the POSS molecule and it was highest for…

Materials sciencePolymers and PlasticsSubstituentGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundCrystallinityEthyleneCopolymerizationPolymer chemistryMaterials ChemistryCopolymerReactivity (chemistry)Metallocenechemistry.chemical_classificationComonomerOrganic ChemistryPolymerPolyethylene021001 nanoscience & nanotechnologyPolyhedral oligomeric silsesquioxane (POSS)Silsesquioxane0104 chemical scienceschemistry0210 nano-technologyEuropean Polymer Journal
researchProduct