Search results for "optical lattice"
showing 10 items of 54 documents
Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice
2010
Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, …
Mott transitions in ternary flavor mixtures of ultracold fermions on optical lattices
2009
Ternary flavor mixtures of ultracold fermionic atoms in an optical lattice are studied in the case of equal, repulsive on-site interactions U>0. The corresponding SU(3) invariant Hubbard model is solved numerically exactly within dynamical mean-field theory using multigrid Hirsch-Fye quantum Monte Carlo simulations. We establish Mott transitions close to integer filling at low temperatures and show that the associated signatures in the compressibility and pair occupancy persist to high temperatures, i.e., should be accessible to experiments. In addition, we present spectral functions and discuss the properties of a ``semi-compressible'' state observed for large U near half filling.
Many-particle dynamics of bosons and fermions in quasi-one-dimensional flat-band lattices
2013
The difference between boson and fermion dynamics in quasi-one-dimensional lattices is studied by calculating the persistent current in small quantum rings and by exact simulations of the time evolution of the many-particle state in two cases: expansion of a localized cloud and collisions in a Newton’s cradle. We consider three different lattices which in the tight-binding model exhibit flat bands. The physical realization is considered to be an optical lattice with bosonic or fermionic atoms. The atoms are assumed to interact with a repulsive short-range interaction. The different statistics of bosons and fermions lead to different dynamics. Spinless fermions are easily trapped in the flat…
Entanglement interferometry for precision measurement of atomic scattering properties.
2003
We report on a two-particle matter wave interferometer realized with pairs of trapped 87Rb atoms. Each pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by first creating a coherent spin-mixture of the two atoms and then tuning the inter-state scattering length via a Feshbach resonance. The selective change of the inter-state scattering length leads to an entanglement dynamics of the two-particle state that can be detected in a Ramsey interference experiment. This entanglement dynamics is employed for a precision measurement of atomic interaction parameters. Furthermore, the interferometer allows to separate lattice sites with one or …
Quantum transport of single neutral atoms
2007
The state-selective (quantum) transport of single neutral atoms stored in a one dimensional optical lattice is a promising technique to implement controlled atomic interaction using coherent cold collisions. This is required in several schemes of quantum information processing. Here, we present a technical implementation of the quantum transport scheme for one, two and more caesium atoms, as well as the manipulation and detection of their internal states.
Quantum engineering of Majorana quasiparticles in one-dimensional optical lattices
2017
We propose a feasible way of engineering Majorana-type quasiparticles in ultracold fermionic gases on a one-dimensional (1D) optical lattice. For this purpose, imbalanced ultracold atoms interacting by the spin-orbit coupling should be hybridized with a three-dimensional Bose-Einstein condensate (BEC) molecular cloud. By constraining the profile of an internal defect potential we show that the Majorana-type excitations can be created or annihilated. This process is modelled within the Bogoliubov-de Gennes approach. This study is relevant also to nanoscopic 1D superconductors where modification of the internal defect potential can be obtained by electrostatic means.
Superfluidity of fermionic pairs in a harmonic trap. Comparative studies: Local Density Approximation and Bogoliubov-de Gennes solutions
2020
Abstract Experiments with ultracold gases on the lattice give the opportunity to realize superfluid fermionic mixtures in a trapping potential. The external trap modifies the chemical potential locally. Moreover, this trap also introduces non-homogeneity in the superconducting order parameter. There are, among other approaches, two methods which can be used to describe the system of two-component mixtures loaded into an optical lattice: the Local Density Approximation (LDA) and the self-consistent Bogoliubov–de Gennes equations. Here, we compare results obtained within these two methods. We conclude that the results can be distinguishable only in the case of a small value of the pairing int…
Simulating quantum-optical phenomena with optical lattices
2011
Cold atoms trapped in optical lattices have been proved to be very versatile quantum systems in which a large class of many-body condensed-matter Hamiltonians can be simulated [1].
Quantum Phases in a Resonantly Interacting Boson-Fermion Mixture
2005
We consider a resonantly-interacting Bose-Fermi mixture of $^{40}$K and $^{87}$Rb atoms in an optical lattice. We show that by using a red-detuned optical lattice the mixture can be accurately described by a generalized Hubbard model for $^{40}$K and $^{87}$Rb atoms, and $^{40}$K-$^{87}$Rb molecules. The microscopic parameters of this model are fully determined by the details of the optical lattice and the interspecies Feshbach resonance in the absence of the lattice. We predict a quantum phase transition to occur in this system already at low atomic filling fraction, and present the phase diagram as a function of the temperature and the applied magnetic field.
Spatial quantum noise interferometry in expanding ultracold atom clouds
2005
It is ten years since the exotic form of matter known as a Bose–Einstein condensate was first created. It was the birth of ultra-low-temperature physics, and practitioners gathered last month in Banff, Canada, to celebrate and discuss the latest news, as Karen Fox reports. And this week a new development that could have a major impact in the field is announced. In the 1950s, Hanbury Brown and Twiss showed that it is possible to measure angular sizes of astronomical radio sources from correlations of signal intensities in independent detectors. ‘HBT interferometry’ later became a key technique in quantum optics, and now it has been harnessed to identify a quantum phase of ultracold bosonic a…