Search results for "optical sectioning"
showing 6 items of 26 documents
Diffractive pulse-front tilt for low-coherence digital holography
2010
We use a diffractive lens to generate the proper pulse-front-tilt to record full-field off-axis holograms with a 10fs laser source. We experimentally demonstrate optical sectioning of three-dimensional samples with a resolution of about 5 microns.
Quasi-spherical focal spot in two-photon scanning microscopy by three-ring apodization
2005
International audience; We present a beam-shaping technique for two-photon excitation (TPE) fluorescence microscopy. We show that by inserting a properly designed three-ring pupil filter in the illumination beam of the microscope, the effective optical sectioning capacity of such a system improves so that the point spread function gets a quasi-spherical shape. Such an improvement, which allows the acquisition of 3D images with isotropic quality, is obtained at the expense of only a small increase of the overall energy in the axial sidelobes. The performance of this technique is illustrated with a scanning TPE microscopy experiment in which the image of small beads is obtained. We demonstrat…
Fast multi-directional DSLM for confocal detection without striping artifacts
2020
In recent years light-sheet fluorescence microscopy (LSFM) has become a cornerstone technology for neuroscience, improving the quality and capabilities of 3D imaging. By selectively illuminating a single plane, it provides intrinsic optical sectioning and fast image recording, while minimizing out of focus fluorescence background, sample photo-damage and photo-bleaching. However, images acquired with LSFM are often affected by light absorption or scattering effects, leading to un-even illumination and striping artifacts. In this work we present an optical solution to this problem, via fast multi-directional illumination of the sample, based on an acousto-optical deflector (AOD). We demonstr…
Light Sheet Fluorescence Microscopy (LSFM) for Two-Photon Excitation Imaging of Thick Samples.
2015
Over the last decades, fluorescence microscopy techniques have been developed in order to provide a deeper, faster and higher resolution imaging of three-dimensional biological samples. Within this framework, Light Sheet Fluorescence Microscopy (LSFM) became an increasingly useful and popular imaging technique able to answer several biological questions in the field of developmental biology [1]. Thanks to the spatial confinement of the excitation process within a thin sheet in the focal plane, it provides an intrinsic optical sectioning and a reduced phototoxicity. On the other side, Two-Photon Excitation (2PE), thanks to the use of IR wavelengths, has become an invaluable tool to improve i…
Axial superresolution by synthetic aperture generation
2008
The use of tilted illumination onto the input object in combination with time multiplexing is a useful technique to overcome the Abbe diffraction limit in imaging systems. It is based on the generation of an expanded synthetic aperture that improves the cutoff frequency (and thus the resolution limit) of the imaging system. In this paper we present an experimental validation of the fact that the generation of a synthetic aperture improves not only the lateral resolution but also the axial one. Thus, it is possible to achieve higher optical sectioning of three-dimensional (3D) objects than that defined by the theoretical resolution limit imposed by diffraction. Experimental results are provi…
Experimental validation of a customized phase mask designed to enable efficient computational optical sectioning microscopy through wavefront encodin…
2017
In this paper, wavefront-encoded (WFE) computational optical sectioning microscopy (COSM) using a fabricated square cubic (SQUBIC) phase mask, designed to render the system less sensitive to depth-induced aberration, is investigated. The WFE-COSM system is characterized by a point spread function (PSF) that does not vary as rapidly with imaging depth compared to the conventional system. Thus, in WFE-COSM, image restoration from large volumes can be achieved using computationally efficient space-invariant (SI) algorithms, thereby avoiding the use of depth-variant algorithms. The fabricated SQUBIC phase mask was first evaluated and found to have a 75% fidelity compared to the theoretical desi…