6533b7d7fe1ef96bd1268fe1

RESEARCH PRODUCT

Experimental validation of a customized phase mask designed to enable efficient computational optical sectioning microscopy through wavefront encoding.

Hasti ShabaniChrysanthe PrezaAna DoblasNurmohammed PatwaryGenaro Saavedra

subject

WavefrontPoint spread functionMicroscopeMaterials scienceOptical sectioningImage qualitybusiness.industryMaterials Science (miscellaneous)Experimental data02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIndustrial and Manufacturing Engineeringlaw.invention010309 opticsOpticslaw0103 physical sciencesMicroscopyBusiness and International Management0210 nano-technologybusinessImage restoration

description

In this paper, wavefront-encoded (WFE) computational optical sectioning microscopy (COSM) using a fabricated square cubic (SQUBIC) phase mask, designed to render the system less sensitive to depth-induced aberration, is investigated. The WFE-COSM system is characterized by a point spread function (PSF) that does not vary as rapidly with imaging depth compared to the conventional system. Thus, in WFE-COSM, image restoration from large volumes can be achieved using computationally efficient space-invariant (SI) algorithms, thereby avoiding the use of depth-variant algorithms. The fabricated SQUBIC phase mask was first evaluated and found to have a 75% fidelity compared to the theoretical design; it was then integrated in a commercial wide-field microscope to implement a WFE-COSM system. Evaluation of the WFE-COSM system is demonstrated with comparative studies of theoretical and experimental PSFs and simulated and measured images of spherical shells located at different depths in a test sample. These comparisons show that PSF and imaging models capture major trends in experimental data with a 99% correlation between forward image intensity distribution in experimental and simulated images of spherical shells. Our experimental SI restoration results demonstrate that the WFE-COSM system achieves more than a twofold performance improvement over the conventional system of up to a 65 μm depth below the coverslip investigated in this study.

10.1364/ao.56.000d14https://pubmed.ncbi.nlm.nih.gov/28375383