0000000000306073

AUTHOR

Hasti Shabani

Experimental validation of a customized phase mask designed to enable efficient computational optical sectioning microscopy through wavefront encoding.

In this paper, wavefront-encoded (WFE) computational optical sectioning microscopy (COSM) using a fabricated square cubic (SQUBIC) phase mask, designed to render the system less sensitive to depth-induced aberration, is investigated. The WFE-COSM system is characterized by a point spread function (PSF) that does not vary as rapidly with imaging depth compared to the conventional system. Thus, in WFE-COSM, image restoration from large volumes can be achieved using computationally efficient space-invariant (SI) algorithms, thereby avoiding the use of depth-variant algorithms. The fabricated SQUBIC phase mask was first evaluated and found to have a 75% fidelity compared to the theoretical desi…

research product

Improvement of two-dimensional structured illumination microscopy with an incoherent illumination pattern of tunable frequency.

In two-dimensional structured illumination microscopy (2D-SIM), high-resolution images with optimal optical sectioning (OS) cannot be obtained simultaneously. This tradeoff can be overcome by using a tunable-frequency 2D-SIM system and a proper reconstruction method. The goal of this work is twofold. First, we present a computational approach to reconstruct optical-sectioned images with super-resolution enhancement (OS-SR) by using a tunable SIM system. Second, we propose an incoherent tunable-frequency 2D-SIM system based on a Fresnel biprism implementation. Integration of the proposed computational method with this tunable structured illumination (SI) system results in a new 2D-SIM system…

research product

Investigating the performance of reconstruction methods used in structured illumination microscopy as a function of the illumination pattern's modulation frequency

Surpassing the resolution of optical microscopy defined by the Abbe diffraction limit, while simultaneously achieving optical sectioning, is a challenging problem particularly for live cell imaging of thick samples. Among a few developing techniques, structured illumination microscopy (SIM) addresses this challenge by imposing higher frequency information into the observable frequency band confined by the optical transfer function (OTF) of a conventional microscope either doubling the spatial resolution or filling the missing cone based on the spatial frequency of the pattern when the patterned illumination is two-dimensional. Standard reconstruction methods for SIM decompose the low and hi…

research product

Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition

The performance of a tunable three-dimensional (3D) structured illumination microscope (SIM) system and its ability to provide simultaneously super-resolution (SR) and optical-sectioning (OS) capabilities are investigated. Numerical results show that the performance of our 3D-SIM system is comparable with the one provided by a three-wave interference SIM, while requiring 40% fewer images for the reconstruction and providing frequency tunability in a cost-effective implementation. The performance of the system has been validated experimentally with images from test samples, which were also imaged with a commercial SIM based on incoherent-grid projection for comparison. Restored images from d…

research product

Optical transfer function engineering for a tunable 3D structured illumination microscope

Two important features of three-dimensional structured illumination microscopy (3D-SIM) are its optical sectioning (OS) and super-resolution (SR) capabilities. Previous works on 3D-SIM systems show that these features are coupled. We demonstrate that a 3D-SIM system using a Fresnel biprism illuminated by multiple linear incoherent sources provides a structured illumination pattern whose lateral and axial modulation frequencies can be tuned separately. Therefore, the compact support of the synthetic optical transfer function (OTF) can be engineered to achieve the highest OS and SR capabilities for a particular imaging application. Theoretical performance of our engineered system based on the…

research product

Recent Advances in 3D Structured Illumination Microscopy

In structured illumination microscopy (SIM) the sample under investigation is illuminated using a structured illumination (SI) pattern. This SI pattern encodes high spatial frequencies of fine features within the sample, which usually are not transferred by the conventional three-dimensional (3D) optical transfer function (OTF) of the imaging system and fills the missing cone of frequencies in the OTF for better discrimination of the out-of-focus light. Thereby, SIM provides super-resolution (SR) performance beyond the diffraction limit and optical-sectioning (OS) capability with the use of data post-processing approaches. 3D structured patterns that include lateral and axial variations in …

research product