Search results for "optimality"

showing 10 items of 60 documents

Treed Gaussian Process Regression for Solving Offline Data-Driven Continuous Multiobjective Optimization Problems

2023

Abstract For offline data-driven multiobjective optimization problems (MOPs), no new data is available during the optimization process. Approximation models (or surrogates) are first built using the provided offline data and an optimizer, e.g. a multiobjective evolutionary algorithm, can then be utilized to find Pareto optimal solutions to the problem with surrogates as objective functions. In contrast to online data-driven MOPs, these surrogates cannot be updated with new data and, hence, the approximation accuracy cannot be improved by considering new data during the optimization process. Gaussian process regression (GPR) models are widely used as surrogates because of their ability to pr…

Pareto optimalityComputational Mathematicspareto-tehokkuusgaussiset prosessitmetamodellingGaussian processeskrigingsurrogateregression treeskriging-menetelmämonitavoiteoptimointi
researchProduct

A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem

2017

A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process. peerReviewed

data-driven optimizationPareto optimalityEngineeringBlast furnaceMathematical optimizationOptimization problemmodel managementblast furnaceEvolutionary algorithm02 engineering and technologyMulti-objective optimizationIndustrial and Manufacturing Engineering020501 mining & metallurgyData-drivenironmakingoptimointi0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceta113business.industrypareto-tehokkuusMechanical EngineeringProcess (computing)metamodelingMetamodeling0205 materials engineeringmulti-objective optimizationMechanics of MaterialsPrincipal component analysis020201 artificial intelligence & image processingbusinessrautateollisuus
researchProduct

On parsing optimality for dictionary-based text compression—the Zip case

2013

Dictionary-based compression schemes are the most commonly used data compression schemes since they appeared in the foundational paper of Ziv and Lempel in 1977, and generally referred to as LZ77. Their work is the base of Zip, gZip, 7-Zip and many other compression software utilities. Some of these compression schemes use variants of the greedy approach to parse the text into dictionary phrases; others have left the greedy approach to improve the compression ratio. Recently, two bit-optimal parsing algorithms have been presented filling the gap between theory and best practice. We present a survey on the parsing problem for dictionary-based text compression, identifying noticeable results …

Theoretical computer scienceComputer scienceData_CODINGANDINFORMATIONTHEORYTop-down parsingcomputer.software_genreTheoretical Computer ScienceParsing optimalityCompression (functional analysis)Discrete Mathematics and CombinatoricsLossless compressionParsingLZ77 algorithmSettore INF/01 - InformaticaDeflate algorithmbusiness.industryDictionary-based text compressionComputational Theory and MathematicsData compressionDEFLATECompression ratioArtificial intelligencebusinesscomputerNatural language processingBottom-up parsingData compressionJournal of Discrete Algorithms
researchProduct

ANOVA-MOP: ANOVA Decomposition for Multiobjective Optimization

2018

Real-world optimization problems may involve a number of computationally expensive functions with a large number of input variables. Metamodel-based optimization methods can reduce the computational costs of evaluating expensive functions, but this does not reduce the dimension of the search domain nor mitigate the curse of dimensionality effects. The dimension of the search domain can be reduced by functional anova decomposition involving Sobol' sensitivity indices. This approach allows one to rank decision variables according to their impact on the objective function values. On the basis of the sparsity of effects principle, typically only a small number of decision variables significantl…

Pareto optimality0209 industrial biotechnologyMathematical optimizationOptimization problempäätöksenteko0211 other engineering and technologies02 engineering and technologyMulti-objective optimizationdecision makingTheoretical Computer Science020901 industrial engineering & automationsensitivity analysisDecomposition (computer science)multiple criteria optimizationdimensionality reductionMathematicsta113021103 operations researchpareto-tehokkuusDimensionality reductionta111metamodelingmonitavoiteoptimointiMetamodelingOptimization methodsSoftwareSIAM Journal on Optimization
researchProduct

Construction and optimality of a special class of balanced designs

2006

The use of balanced designs is generally advisable in experimental practice. In technological experiments, balanced designs optimize the exploitation of experimental resources, whereas in marketing research experiments they avoid erroneous conclusions caused by the misinterpretation of interviewed customers. In general, the balancing property assures the minimum variance of first-order effect estimates. In this work the authors consider situations in which all factors are categorical and minimum run size is required. In a symmetrical case, it is often possible to find an economical balanced design by means of algebraic methods. Conversely, in an asymmetrical case algebraic methods lead to e…

Mathematical optimizationOrthogonality (programming)Computer scienceHeuristic (computer science)Property (programming)Settore SECS-S/02 - Statistica Per La Ricerca Sperimentale E TecnologicaManagement Science and Operations Researchbalancingnearly orthogonalarraytwo- and three-level designsoptimalityEmpirical researchMinimum-variance unbiased estimatorEconometricsinteraction estimabilityAlgebraic numberSafety Risk Reliability and QualityMarketing researchCategorical variableasymmetrical (mixed-level) design
researchProduct

Potential of interactive multiobjective optimization in supporting the design of a groundwater biodenitrification process

2019

The design of water treatment plants requires simultaneous analysis of technical, economic and environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages of an interactive multiobjective optimization (MOO) method over a posteriori methods in an unexplored field, namely the design of a biological treatment plant for drinking water production, that tackles the process drawbacks, contrarily to what happens in a traditional volumetric-load-driven design procedure. Specifically, we consider a groundwater denitrification biofilter, simulated by the Activated Sludge Model modified with two-stage denitrification kinetics. Three objectives were defined (nitr…

Pareto optimalityDecision support systemdecision supportEnvironmental EngineeringProcess (engineering)Computer science0208 environmental biotechnologypäätöksentukijärjestelmät02 engineering and technologyActivated sludge model010501 environmental sciencesManagement Monitoring Policy and Law01 natural sciencesMulti-objective optimizationInteractive methodIND-NIMBUSWater treatmentSensitivity (control systems)Process engineeringWaste Management and DisposalGroundwater0105 earth and related environmental sciencesvedenpuhdistusNitratesSewagepareto optimalitypareto-tehokkuusbusiness.industrywater treatmentGeneral Medicineinteractive methodvedenkäsittelymonitavoiteoptimointi020801 environmental engineeringDecision supportRange (mathematics)Decision support; IND-NIMBUS; Interactive method; NIMBUS method; Pareto optimality; Water treatment; Algorithms; Denitrification; Nitrates; Sewage; GroundwaterDenitrificationA priori and a posterioriWater treatmentNIMBUS methodbusinessAlgorithms
researchProduct

Interactive Multiobjective Robust Optimization with NIMBUS

2018

In this paper, we introduce the MuRO-NIMBUS method for solving multiobjective optimization problems with uncertain parameters. The concept of set-based minmax robust Pareto optimality is utilized to tackle the uncertainty in the problems. We separate the solution process into two stages: the pre-decision making stage and the decision making stage. We consider the decision maker’s preferences in the nominal case, i.e., with the most typical or undisturbed values of the uncertain parameters. At the same time, the decision maker is informed about the objective function values in the worst case to support her/him to make an informed decision. To help the decision maker to understand the behavio…

Mathematical optimization021103 operations researchComputer sciencepareto-tehokkuuspäätöksenteko0211 other engineering and technologiesPareto principlemultiple criteria decision makingRobust optimization02 engineering and technologyrobustnessinteractive methodsDecision makerMinimaxTwo stagesrobust Pareto optimalitymonitavoiteoptimointiepävarmuusMultiobjective optimization problemRobustness (computer science)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing
researchProduct

A Sequential Quadratic Programming Method for Volatility Estimation in Option Pricing

2006

Our goal is to identify the volatility function in Dupire's equation from given option prices. Following an optimal control approach in a Lagrangian framework, we propose a globalized sequential quadratic programming (SQP) algorithm with a modified Hessian - to ensure that every SQP step is a descent direction - and implement a line search strategy. In each level of the SQP method a linear-quadratic optimal control problem with box constraints is solved by a primal-dual active set strategy. This guarantees L^1 constraints for the volatility, in particular assuring its positivity. The proposed algorithm is founded on a thorough first- and second-order optimality analysis. We prove the existe…

Hessian matrixMathematical optimizationLine searchComputer scienceMathematicsofComputing_NUMERICALANALYSISOptimal controlsymbols.namesakeValuation of optionsLagrange multipliersymbolsDescent directionVolatility (finance)Dupire equation parameter identification optimal control optimality conditions SQP method primal-dual active set strategySequential quadratic programming
researchProduct

Survey of methods to visualize alternatives in multiple criteria decision making problems

2012

When solving decision problems where multiple conflicting criteria are to be considered simultaneously, decision makers must compare several different alternatives and select the most preferred one. The task of comparing multidimensional vectors is very demanding for the decision maker without any support. Different graphical visualization tools can be used to support and help the decision maker in understanding similarities and differences between the alternatives and graphical illustration is a very important part of decision support systems that are used in solving multiple criteria decision making problems. The visualization task is by no means trivial because, on the one hand, the grap…

Decision support systemComputer sciencevisualisointiDecision treeManagement Science and Operations Researchgraafinen kuvituscomparison of alternativesmulticriteria optimizationInfluence diagramirralliset vaihtoehdotmultiobjective optimizationvaihtoehtojen vertailudiscrete alternativesvisualizationMCDMDecision engineeringpareto optimalityManagement scienceEvidential reasoning approachinteractive methodsMultiple-criteria decision analysisgraphical illustrationBusiness Management and Accounting (miscellaneous)päätösanalyysiDecision analysisOptimal decisionOR Spectrum
researchProduct

Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method

2012

Abstract Heat exchanger network synthesis (HENS) has been an active research area for more than 40 years because well-designed heat exchanger networks enable heat recovery in process industries in an energy- and cost-efficient manner. Due to ever increasing global competition and need to decrease the harmful effects done on the environment, there still is a continuous need to improve the heat exchanger networks and their synthesizing methods. In this work we present a HENS method that combines an interactive multi-objective optimization method with a simultaneous bilevel HENS method, where the bilevel part of the method is based on grouping of process streams and building aggregate streams …

ta212MINLPNUMBUSPareto optimalityEngineeringMathematical optimizationEngineering drawingta214business.industryta111Aggregate (data warehouse)Synheat modelProcess (computing)Energy Engineering and Power TechnologyWork in processMulti-objective optimizationIndustrial and Manufacturing EngineeringWeightingGrouping of processHeat recovery ventilationHeat exchangerbusinessta218Energy (signal processing)Applied Thermal Engineering
researchProduct