Search results for "optimality"

showing 10 items of 60 documents

Interactive multiobjective optimization with NIMBUS for decision making under uncertainty

2013

We propose an interactive method for decision making under uncertainty, where uncertainty is related to the lack of understanding about consequences of actions. Such situations are typical, for example, in design problems, where a decision maker has to make a decision about a design at a certain moment of time even though the actual consequences of this decision can be possibly seen only many years later. To overcome the difficulty of predicting future events when no probabilities of events are available, our method utilizes groupings of objectives or scenarios to capture different types of future events. Each scenario is modeled as a multiobjective optimization problem to represent differe…

Mathematical optimizationComputer sciencepareto optimalityManagement Science and Operations Researchinteractive methodsDecision makerskenaariotMulti-objective optimizationMoment (mathematics)Conflicting objectivesmultiple objective programmingBusiness Management and Accounting (miscellaneous)uncertainty handlingPortfolio optimizationDecision-makingclassification of objectivesOptimal decisionDecision analysis
researchProduct

On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization

2019

Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, mathematical or simulation models are not always available and, instead, we only have data from experiments, measurements or sensors. In such cases, optimization is to be performed on surrogate models built on the data available. The main challenge there is to fit an accurate surrogate model and to obtain meaningful solutions. We apply Kriging as a surrogate model and utilize corresponding uncertainty information in different ways during the optimization process. We discuss…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemComputer scienceetamodelling02 engineering and technologyMulti-objective optimizationTheoretical Computer ScienceData-drivensymbols.namesakeSurrogate modelMetamodellingKriging020204 information systemsMachine learning0202 electrical engineering electronic engineering information engineeringsurrogateGaussian process/dk/atira/pure/subjectarea/asjc/1700Gaussian processpareto-tehokkuusmonitavoiteoptimointikoneoppiminensymbolsBenchmark (computing)/dk/atira/pure/subjectarea/asjc/2600/2614020201 artificial intelligence & image processingnormaalijakaumaComputer Science(all)
researchProduct

Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm

2019

We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. We are motivated by practical applicability and focus on two main challenges faced by practitioners in industry: 1) meaningful formulation of the optimization problem reflecting the needs of a decision maker and 2) finding a desirable solution based on a decision maker’s preferences when solving a problem with computationally expensive function evaluations. For the first challenge, we describe the procedure of modelling a component in the air intake ventilation system wi…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemProcess (engineering)Computer sciencemedia_common.quotation_subjectmultiple criteria decision makingEvolutionary algorithmoptimal shape designpreference information0102 computer and information sciences02 engineering and technology01 natural sciencesComponent (UML)0202 electrical engineering electronic engineering information engineeringBaseline (configuration management)Function (engineering)Preference (economics)media_commonpareto-tehokkuusilmanvaihtojärjestelmätmetamodelsmonitavoiteoptimointikoneoppiminen010201 computation theory & mathematicsevolutionary multi-objective optimizationcomputational costs020201 artificial intelligence & image processingmuotoProceedings of the Genetic and Evolutionary Computation Conference
researchProduct

Asymptotic optimality of myopic information-based strategies for Bayesian adaptive estimation

2016

This paper presents a general asymptotic theory of sequential Bayesian estimation giving results for the strongest, almost sure convergence. We show that under certain smoothness conditions on the probability model, the greedy information gain maximization algorithm for adaptive Bayesian estimation is asymptotically optimal in the sense that the determinant of the posterior covariance in a certain neighborhood of the true parameter value is asymptotically minimal. Using this result, we also obtain an asymptotic expression for the posterior entropy based on a novel definition of almost sure convergence on "most trials" (meaning that the convergence holds on a fraction of trials that converge…

Statistics and ProbabilityAsymptotic analysisMathematical optimizationPosterior probabilityBayesian probabilityMathematics - Statistics TheoryStatistics Theory (math.ST)050105 experimental psychologydifferential entropyDifferential entropyactive data selection03 medical and health sciences0302 clinical medicineactive learningFOS: Mathematics0501 psychology and cognitive sciencescost of observationdecision theoryMathematicsD-optimalityBayes estimatorSequential estimation05 social sciencesBayesian adaptive estimationAsymptotically optimal algorithmConvergence of random variablesasymptotic optimalitysequential estimation030217 neurology & neurosurgery
researchProduct

On solving computationally expensive multiobjective optimization problems with interactive methods

2014

Pareto-tehokkuusPareto optimalityinteractive multiobjective optimizationmatemaattinen optimointimonitavoiteoptimointilaskennallinen vaativuusmenetelmätPareto-optimointioptimointialgoritmitinteraktiiviset optimointimenetelmätNIMBUS methodsoftware implementationcomputational cost
researchProduct

Implementation aspects of interactive multiobjective optimization for modeling environments: The case of GAMS-NIMBUS

2014

Abstract. Interactive multiobjective optimization methods have provided promising results in the literature but still their implementations are rare. Here we introduce a core structure of interactive methods to enable their convenient implementation. We also demonstrate how this core structure can be applied when implementing an interactive method using a modeling environment. Many modeling environments contain tools for single objective optimization but not for interactive multiobjective optimization. Furthermore, as a concrete example, we present GAMS-NIMBUS Tool which is an implementation of the classification-based NIMBUS method for the GAMS modeling environment. So far, interactive met…

Structure (mathematical logic)Mathematical optimizationControl and OptimizationModeling languageComputer sciencepareto optimalityApplied Mathematicsinteractive methodsMultiple objective programmingMulti-objective optimizationComputational MathematicsMultiobjective optimization problemSingle objectivemultiple objective programmingNIMBUS methodImplementationmodeling languages
researchProduct

On Using the Theory of Regular Functions to Prove the ε-Optimality of the Continuous Pursuit Learning Automaton

2013

Published version of a chapter in the book: Recent Trends in Applied Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-38577-3_27 There are various families of Learning Automata (LA) such as Fixed Structure, Variable Structure, Discretized etc. Informally, if the environment is stationary, their ε-optimality is defined as their ability to converge to the optimal action with an arbitrarily large probability, if the learning parameter is sufficiently small/large. Of these LA families, Estimator Algorithms (EAs) are certainly the fastest, and within this family, the set of Pursuit algorithms have been considered to be the pioneering schemes. The…

Property (philosophy)Learning automataComputer scienceVDP::Mathematics and natural science: 400::Information and communication science: 420::Algorithms and computability theory: 422Structure (category theory)Monotonic functionMathematical proofAutomatonArbitrarily largeε-optimalityContinuous Pursuit AlgorithmCalculuspursuit algorithmsAlgorithmVariable (mathematics)
researchProduct

Interactive Nonconvex Pareto Navigator for Multiobjective Optimization

2019

Abstract We introduce a new interactive multiobjective optimization method operating in the objective space called Nonconvex Pareto Navigator . It extends the Pareto Navigator method for nonconvex problems. An approximation of the Pareto optimal front in the objective space is first generated with the PAINT method using a relatively small set of Pareto optimal outcomes that is assumed to be given or computed prior to the interaction with the decision maker. The decision maker can then navigate on the approximation and direct the search for interesting regions in the objective space. In this way, the decision maker can conveniently learn about the interdependencies between the conflicting ob…

Mathematical optimizationInformation Systems and Managementinteractive multiobjective optimizationGeneral Computer ScienceComputer science0211 other engineering and technologies02 engineering and technologyManagement Science and Operations ResearchSpace (commercial competition)Multi-objective optimizationIndustrial and Manufacturing Engineering0502 economics and businessnonconvex problemsnavigationta113050210 logistics & transportation021103 operations researchpareto-tehokkuuspareto optimality05 social sciencesPareto principlemonitavoiteoptimointinavigointiModeling and Simulationmultiple objective programmingEuropean Journal of Operational Research
researchProduct

The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements

2008

An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data. The cost proposed here includes a term called the absolute work of forces, reflecti…

MaleMESH: Range of Motion ArticularMESH : Physical ExertionMESH : MovementOptimality criterion[SDV.MHEP.PHY] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]Computer scienceMESH: Muscle ContractionMESH: GravitationMESH : Models BiologicalMESH: MovementKinematicsMESH: Postural BalanceMESH : Gravitation0302 clinical medicineNeuroscience/Motor SystemsMESH : FeedbackMESH : BiomechanicsRange of Motion ArticularMESH: ArmMESH : Jointslcsh:QH301-705.5Postural BalanceMESH: Biomechanics0303 health sciencesNeuroscience/Behavioral NeuroscienceEcology[ SDV.MHEP.PHY ] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]MESH: FeedbackMESH : AdultBiomechanical PhenomenaMathematical theoryMESH: JointsComputational Theory and MathematicsModeling and SimulationArmResearch ArticleGravitationMuscle ContractionComputer Science/Systems and Control TheoryAdultMESH : MaleMovementPhysical ExertionComputational Biology/Computational NeuroscienceMESH: Psychomotor PerformanceModels BiologicalMESH : ArmFeedbackMESH: Physical Exertion03 medical and health sciencesCellular and Molecular NeuroscienceMESH : Postural BalanceControl theory[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]GeneticsHumansNeuroscience/Theoretical NeuroscienceMolecular BiologyEcology Evolution Behavior and SystematicsSimulation030304 developmental biologyMESH: HumansMESH : HumansWork (physics)MESH: Models BiologicalMotor controlMESH: AdultMESH : Psychomotor PerformanceFunction (mathematics)Optimal controlMESH: MaleTerm (time)MESH : Range of Motion Articularlcsh:Biology (General)MESH : Muscle ContractionJoints030217 neurology & neurosurgeryMathematicsPsychomotor PerformancePLoS Computational Biology
researchProduct

On incorporating the paradigms of discretization and Bayesian estimation to create a new family of pursuit learning automata

2013

Published version of an article in the journal: Applied Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/s10489-013-0424-x There are currently two fundamental paradigms that have been used to enhance the convergence speed of Learning Automata (LA). The first involves the concept of utilizing the estimates of the reward probabilities, while the second involves discretizing the probability space in which the LA operates. This paper demonstrates how both of these can be simultaneously utilized, and in particular, by using the family of Bayesian estimates that have been proven to have distinct advantages over their maximum likelihood counterparts. The success of LA-…

Bayes estimatorLearning automataDiscretizationbusiness.industryComputer scienceMaximum likelihoodBayesian probabilityestimator algorithmsBayesian reasoningEstimatorlearning automataBayesian inferencediscretized learningVDP::Mathematics and natural science: 400::Information and communication science: 420::Knowledge based systems: 425Artificial Intelligenceε-optimalityArtificial intelligencepursuit schemesbusinessAlgorithm
researchProduct