Search results for "optoelectronic"

showing 10 items of 2328 documents

Photobleaching effects onin vivoskin autofluorescence lifetime

2015

The autofluorescence lifetime of healthy human skin was measured using excitation provided by a picosecond diode laser operating at a wavelength of 405 nm and with fluorescence emission collected at 475 and 560 nm. In addition, spectral and temporal responses of healthy human skin and intradermal nevus in the spectral range 460 to 610 nm were studied before and after photobleaching. A decrease in the autofluorescences lifetimes changes was observed after photobleaching of human skin. A three-exponential model was used to fit the signals, and under this model, the most significant photoinduced changes were observed for the slowest lifetime component in healthy skin at the spectral range 520 …

AdultTime FactorsMaterials scienceLightPhotochemistryBiomedical EngineeringHuman skinAbsorption (skin)LipofuscinBiomaterialsNuclear magnetic resonanceFlavinsIntradermal NevusmedicineHumansNevusskin and connective tissue diseasesPhospholipidsSkinInflammationPhotobleachingbusiness.industryEquipment DesignMiddle AgedHandmedicine.diseasePhotobleachingFluorescenceAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAutofluorescenceSpectrometry FluorescenceOxyhemoglobinsPicosecondFlavin-Adenine DinucleotideNevus IntradermalOptoelectronicsbusinessJournal of Biomedical Optics
researchProduct

From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials

2010

Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GS…

AgInSbTeHardware_MEMORYSTRUCTURESMaterials scienceta114business.industryMechanical EngineeringRecrystallization (metallurgy)General ChemistryNanosecondCondensed Matter PhysicsLocal structurePhase changeSemiconductorMechanics of MaterialsOptoelectronicsGeneral Materials ScienceAtomic physicsbusinessUltrashort pulseOptical discNature Materials
researchProduct

Waveguiding properties of a photonic crystal fiber with a solid core surrounded by four large air holes

2009

The polarization-dependent guiding properties of a hexagonal-lattice photonic crystal fiber with a solid-core surrounded by four large air holes are investigated. The appearance of a polarization dependent cutoff frequency, together with several parameters as the birefringence, the modal effective area, the group velocity dispersion and the polarization dependent loss are analyzed. A collection of fibers with different structural parameters were fabricated and characterized. An effective anti-guide structure from at least 450 nm to 1750 nm, a polarizing fiber with a polarization dependent loss of 16 dB/m at 1550 nm, and an endlessly singlemode polarization-maintaining fiber with group biref…

All-silica fiberMaterials scienceOptical fiberPhysics::OpticsPolarization-maintaining optical fiberSensitivity and SpecificityGraded-index fiberlaw.inventionDouble-clad fiberOpticslawScattering RadiationDispersion-shifted fiberComputer SimulationOptical FibersPhotonsbusiness.industryReproducibility of ResultsEquipment DesignMicrostructured optical fiberModels TheoreticalÒpticaAtomic and Molecular Physics and OpticsEquipment Failure AnalysisComputer-Aided DesignOptoelectronicsCristallsCrystallizationbusinessPhotonic-crystal fiber
researchProduct

2017

Tailored tellurite-glasses possess excellent thermo-viscous ability and linear/nonlinear optical properties. Here, bringing together the merits of these materials with fiber optic technology, we report on the first tellurite-based core-clad dual-electrode composite fiber made by direct, homothetic preform-to-fiber thermal co-drawing. The rheological and optical properties of the selected glasses allow both to regulate the metallic melting flow and to manage the refractive index core/clad waveguide profile. We demonstrate the electrical continuity of the electrodes over meters of fiber. We believe the drawing of architectures merging electrical and optical features in a unique elongated wave…

All-silica fiberMaterials scienceOptical fiberbusiness.industryPlastic-clad silica fiberPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesWaveguide (optics)Electronic Optical and Magnetic Materialslaw.invention010309 opticslaw0103 physical sciencesOptoelectronicsFiber0210 nano-technologybusinessPlastic optical fiberHard-clad silica optical fiberPhotonic-crystal fiberOptical Materials Express
researchProduct

Management of OH absorption in tellurite optical fibers and related supercontinuum generation

2013

Abstract We report the fabrication and the characterization of low OH content and low loss tellurite optical fibers. The influence of different methods of glass fabrication on fiber losses has been investigated. The use of the purest commercial raw materials can reduce the losses below 0.1 dB/m at 1.55 μm. Incorporation of fluoride ions into the tellurite glass matrix makes the optical fibers transparent up to 4 μm. A suspended core microstructured fiber has been fabricated and pumped by nanojoule-level femtosecond pulses, thus resulting in more than 2000-nm bandwidth supercontinuum after a few centimeters of propagation.

All-silica fiberOptical fiberMaterials scienceFabricationbusiness.industryOrganic ChemistryMicrostructured optical fiberAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionSupercontinuumInorganic ChemistryOpticslawFemtosecondOptoelectronicsElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessHard-clad silica optical fiberSpectroscopyPhotonic-crystal fiberOptical Materials
researchProduct

Visible Light Generation and its Influence on Supercontinuum in Chalcogenide As2S3 Microstructured Optical Fiber

2011

We demonstrate visible light generation in chalcogenide As2S3 microstructured optical fiber. The generated visible light causes irreversible damage to the fiber core because of the high absorption coefficient of chalcogenide glasses in the visible band. The SCs (supercontinua) are measured in both untapered and tapered As2S3 fibers, no wider SC is obtained in the tapered one. The SC growth is prevented by the visible light generation since the damage to the fiber core decreases the fiber transmission substantially. This effect can be avoided by designing the fiber to enable the pump source to work in single-mode operation.

All-silica fiberOptical fiberMaterials scienceGeneral Physics and AstronomyPolarization-maintaining optical fiber02 engineering and technology01 natural sciencesGraded-index fiberlaw.invention010309 opticsOpticslaw0103 physical sciencesPlastic optical fiberComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPlastic-clad silica fiberGeneral Engineering[CHIM.MATE]Chemical Sciences/Material chemistryMicrostructured optical fiber021001 nanoscience & nanotechnology[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph][ CHIM.MATE ] Chemical Sciences/Material chemistryOptoelectronics[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologybusinessPhotonic-crystal fiber
researchProduct

Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm

2004

We report a theoretical and experimental study of the refractive index variation in a heavily doped erbium silica fiber within the spectral range 1500-1580 nm under the pumping at the wavelength 980 nm. The two main contributions in the refractive index change are addressed the resonant part determined by the saturation effect in the fiber and the thermal part stemming from the fiber heating due to the excited-state absorption and Stokes losses. We demonstrate that the thermal contribution in the resultant refractive index change is a notable value, which is the feature of erbium fibers with a high concentration of erbium ions.

All-silica fiberOptical fiberMaterials sciencePhysics and Astronomy (miscellaneous)Silica fiberbusiness.industryPhysics::Opticschemistry.chemical_elementFísicaÒpticaGraded-index fiberlaw.inventionErbiumZero-dispersion wavelengthOpticschemistrylawOptoelectronicssense organsbusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers

2014

An As2S3 fiber-based supercontinuum source that covers 3500 nm, extending from near visible to the midinfrared, is successfully reported by using a 200-fs-pulsed pump with nJ-level energy at 2.5 μm. The main features of our fiber-based source are two-fold. On the one hand, a low-loss As2S3 microstructured optical fiber has been fabricated, with typical attenuation below 2 dB/m in the 1-4 μm wavelength range. On the other hand, a 20-mm-long microstructured fiber sample is sufficient to enable a spectral broadening, spreading from 0.6 to 4.1 μm in a 40 dB dynamic range.

All-silica fiberPHOSFOSMaterials scienceInfrared Raysbusiness.industryEquipment DesignMicrostructured optical fiberSulfidesArsenicalsAtomic and Molecular Physics and OpticsSupercontinuumEquipment Failure AnalysisOpticsZero-dispersion wavelengthEnergy TransferChalcogensOptoelectronicsDispersion-shifted fiberbusinessPlastic optical fiberOptical FibersPhotonic-crystal fiberOptics Letters
researchProduct

Measurement of UV-induced losses and thermal effects in photosensitive fibers using whispering gallery modes

2017

When a photosensitive (PS) fiber is exposed to UV-irradiation, a permanent refractive index change is induced in the core. As a result, according to Kramers-Kronig relations, the absorption coefficient (α) is also increased. This increment of the absorption can lead to a significant heating of the fiber when it is illuminated by a moderate optical power. Thermal effects may produce spectral changes in some fiber devices, as for example Long Period Gratings (LPGs) or Fiber Bragg Gratings (FBGs) [1].

All-silica fiberPHOSFOSMaterials sciencegenetic structuresPlastic-clad silica fiberbusiness.industry02 engineering and technologyLong-period fiber grating021001 nanoscience & nanotechnology01 natural sciencesGraded-index fiber010309 opticsOpticsFiber Bragg grating0103 physical sciencesOptoelectronicssense organs0210 nano-technologybusinessPlastic optical fiberPhotonic-crystal fiber2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct

Characterization of Thin Passive Film-Electrolyte Junctions. The Amorphous Semiconductor (a-SC) Schottky Barrier Approach.

2017

A detailed study of the electronic properties of thin (< 20 nm) anodic TiO2 potentiostatically grown on titanium in two different solutions is presented. The results show that the nature of the anodizing solution affects the electronic properties of the anodic film and in particular the density of electronic state (DOS) distribution. Different DOS were derived from the experimental data analyzed according to the theory of amorphous semiconductor (a-SC) Schottky barrier. It is shown that the usual non-linear and frequency dependent Mott-Schottky plots are in agreement with expected theoretical behaviour of a-SC Schottky barrier. It is shown the importance of the DOS distribution in determini…

Amorphous semiconductorsEngineeringSettore ING-IND/23 - Chimica Fisica Applicatabusiness.industrySchottky barrieranodic TiO2 Thin Passive Film Amorphous Semiconductor Electrochemical Impedance Spectroscopy electronic properties theory of amorphous semiconductor (a-SC) Schottky barrierElectrical engineeringOptoelectronicsElectrolytebusinessCharacterization (materials science)
researchProduct