Search results for "organogel"
showing 10 items of 17 documents
The Gelling Ability of Some Diimidazolium Salts: Effect of Isomeric Substitution of the Cation and Anion
2013
The gelling ability of some geminal imidazolium salts was investigated both in organic solvents and in water solution. Organic salts differing either in the cation or anion structure were taken into account. In particular, the effects on the gel-phase formation of isomeric substitution on the cation or anion as well as of the use of mono- or dianions were evaluated. As far as the cation structure is concerned, isomeric cations, such as 3,3′-di-n-octyl-1,1′-(1,4-phenylenedimethylene)diimidazolium and 3,3′-di-n-octyl-1,1′-(1,3-phenylenedimethylene)diimidazolium, were used. On the other hand, in addition to the bromide anion, isomeric dianions, such as the 1,5- and 2,6-naphthalenedisulfonate a…
In situ formation of steroidal supramolecular gels designed for drug release
2013
In this work, a steroidal gelator containing an imine bond was synthesized, and its gelation behavior as well as a sensitivity of its gels towards acids was investigated. It was shown that the gels were acid-responsive, and that the gelator molecules could be prepared either by a conventional synthesis or directly in situ during the gel forming process. The gels prepared by both methods were studied and it was found that they had very similar macroand microscopic properties. Furthermore, the possibility to use the gels as carriers for aromatic drugs such as 5-chloro-8-hydroxyquinoline, pyrazinecarboxamide, and antipyrine was investigated and the prepared two-component gels were studied with…
Light-responsive hybrid material based on luminescent core-shell quantum dots and steroidal organogel
2016
We report the synthesis of a smart novel hybrid with reversible photoswitchable luminescence properties modulated by light. The combination of a low molecular weight organogelator (LMOG) and CdSe/ZnS core-shell semiconductor nanoparticles capped with trioctylphosphine oxide ligands produces a luminescent, stable and transparent material. Modulation of the luminescence properties was successfully achieved using a diarylethene photochromic compound, with good resistance to fatigue ca. 22 cycles. Interestingly, the morphology of the organogel fibers was preserved in the hybrid, while a partial luminescence quenching of the nanoparticle was observed. This material could have implication for on-…
Insights into localized manipulation of organogel-related microcrystalline spherulite formation
2015
Abstract The formation processes of microcrystalline spherulitic fiber systems related to bile acid amides were determined to include dominant interface-related aspects, the role of which were studied in terms of potential manipulation and increased control over the overall structure of the networks. The nucleation and growth properties and aggregation of two lithocholyl amide derivatives were studied in several organic solvents using thermomicroscopy, as well as thermal control at macroscopic level. Nucleation/crystallization at interfaces was observed to act as the main route for the formation of microcrystalline fibers/solids in six gelator–solvent systems, in which spherulite formation …
High Optical Performance of Cyan‐Emissive CsPbBr3 Perovskite Quantum Dots Embedded in Molecular Organogels
2021
This is the pre-peer reviewed version of the following article: High Optical Performance of Cyan‐Emissive CsPbBr3 Perovskite Quantum Dots Embedded in Molecular Organogels, which has been published in final form at https://doi.org/10.1002/adom.202001786. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions." Perovskite quantum dots (PQDs) have fascinating optoelectronic properties, such as high photoluminescence quantum yield (PLQY) for a broad range of materials, and the possibility to obtain different bandgaps with the same material or halide combinations. Nevertheless, blue‐emissive materials generally present…
Two-component self-assembly with solvent leading to "wet" and microcrystalline organogel fibers
2014
Abstract Hypothesis The microcrystalline fibers of N -(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide 1 provided a useful model system for studying the complex relationship between morphology, experimental parameters, solvent, and the phenomenon of organogelation. The presence of solvents in the solid forms of 1 along with crystallization behavior suggested solvate formation and polymorphic behavior. Experiments Forty solid state- and xerogel samples of 1 formed in organic solvents and in three categories of experimental conditions were analyzed with single crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), Raman microscopy, and attenuated total reflection Fourier-transform infr…
Organic salts and aromatic substrates in two-component gel phase formation: the study of properties and release processes
2015
To identify gel phases able to act as confined reaction media or materials for the removal of organic pollutants, we studied two-component gel phases formed by naphthalenedisulfonate diimidazolium salts in the presence of some organic guests, in 1-propanol solution. Guests differing in π-surface area, bulkiness and electronic properties were taken into account. Soft materials obtained were investigated for their thermal stability, self-repairing ability and morphology. Furthermore, two-component gel phase formation was studied using resonance light scattering (RLS) measurements. Guest release processes from the gel phase were also studied. These processes were monitored as a function of tim…
About entangled networks of worm-like micelles: a rejected hypothesis
1996
We report new results from small-angle neutron scattering on d(1 2)-cyclohexane/lecithin/water micellar solutions performed as a function of the water content (w(o)), temperature (T) and dispersed phase volume fraction (phi). The data from dilute samples are interpretable in terms of the existence of giant cylindrical reverse micelles and are well fit with a core-shell model (that provides the micelle structure and dimensions) with values of 28 and 45 Angstrom for the inner core and the outer shell radii, almost independent on temperature and concentration. Such a result could appear consistent with the current idea that worm-like micelles are living polymers. On the contrary, the appearanc…