Search results for "origami"

showing 10 items of 43 documents

Applications of DNA self-assembled structures in nanoelectronics and plasmonics

2018

In this thesis, the potential applications of DNA self-assembled structures were explored in both nanoelectronics and plasmonics. The works can be divided into two parts: electrical characterization of unmodified multilayered DNA origami and DNA-gold-nanoparticle conjugates after they were trapped between gold nanoelectrodes by dielectrophoresis, and the development of a novel fabrication method using DNA origami as a template for smooth, high resolution metallic nanostructures as well as optical characterization of them. One of the biggest challenges in self-assembled nanoelectronic devices is to connect them to macroscopic circuits. Dielectrophoretic (DEP) trapping has been used extensivel…

dielectrophoresisSERSnanoelektroniikkaoptinen litografiaLSPRself-assemblyDNAmetallizationplasmonicsCDnanorakenteetplasmoniikkalithographyDNA origamiSET
researchProduct

Fabrication of DNA origami lattice on silicon surface for DNA-assisted lithography

2022

Metamaterials obtain new properties from having metallized nanoscale features that are often arranged in repeating patterns. In particular, there is a need to create metasurfaces with a negative refractive index. As nanoscale fabrication using conventional top-down methods can be both difficult and time-consuming, bottom-up techniques have gained growing interest. Especially, the DNA origami method can be utilized to assemble lattices with nanoscale features on 2D surfaces, which can then be metallized using DNA-assisted lithography (DALI). This thesis provides a full study of the DNA origami fishnet lattice assembly kinetics and optimization of lattice order on a silicon surface using liqu…

lattice theorysolid-liquid interfacepiiatomic force microscopynegative refractive indexsiliconDNAmetasurfacemetamaterialsDNA nanotechnologyDNA origamiatomivoimamikroskopiametamateriaalithilateoria
researchProduct

Conception basée sur les origamis pour l'impression 4D de structures déployables

2020

Deployable structures can be deformed between the different configurations through predetermined mechanisms, showing the great potential in many engineering applications. However, their exquisite and intricate mechanisms also bring a great difficulty to the design of its structure. With the growing 4D printing efforts, its self-transforming characteristics under external stimuli provide new possibilities for deploying complex and challenging driving structures. Furthermore, origami-based engineering has provided tremendous technical support for structural conversion, especially from 2D to 3D states, leading to many design studies based on origami-inspired deployable structures. However, the…

[SPI.OTHER]Engineering Sciences [physics]/OtherOrigami-Based designMatériaux intelligentsStructure déployableFabrication additive[SPI.OTHER] Engineering Sciences [physics]/OtherAdditive manufacturingConception des produits[PHYS.MECA.GEME] Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph]Smart materials[PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph]4D PrintingConception à base d'origamiImpression 4DProduct designDeployable structure
researchProduct

Dielectrophoretic trapping of 3D-DNA origamis

2015

DNA-origamilla tarkoitetaan järjestelmää, jossa yksijuosteinen DNA-molekyyli on taiteltu tiettyyn ennaltamäärättyyn muotoon. Haluttua muotoa aproksimoidaan liitämällä yhteen samansuuntaisia DNA-kierteitä, joiden läpi kulkee koko rakenteen matkalta erillinen scaffoldjuoste. Tämä juoste luo lisää linkkejä kierteiden välille ja liittää niiden irtonaiset päät yhteen. Rakennetta koossapitävien liitosjuosteiden (staple strands) avulla scaffold-juosteen taittumista pystytään ohjaamaan ja luomaan vastakkaissuuntaisista DNA-kierteistä koostuva kaksiulotteinen origami. Kolmiulotteinen origami muodostetaan taivuttamalla edellämainittua litteää, kaksiulotteista origamia siten, että se muodostaa itsensä…

DNA-origamiDNAdielektroforeesi
researchProduct

Mathematical and Coding Lessons Based on Creative Origami Activities

2019

AbstractThis paper considers how creativity and creative activities can be encouraged in regular mathematical classes by combining different teaching approaches and academic disciplines. We combined origami and paper folding with fractals and their mathematical properties as well as with coding in Scratch in order to facilitate learning mathematics and computer science. We conducted a case study experiment in a Serbian school with 15 high school students and applied different strategies for learning profound mathematical and coding concepts such as fractals dimension and recursion. The goal of the study was to employ creative activities and examine students’ activities during this process i…

origamitComputer sciencecomputer.software_genre01 natural sciencesEducationorigamiComputingMilieux_COMPUTERSANDEDUCATIONDevelopmental and Educational Psychology0101 mathematicscomputer.programming_languagecodingMultimedia010102 general mathematics05 social sciences050301 educationScratchLscratchScratchfractalsfraktaalitohjelmointi0503 educationcomputerSocial Sciences (miscellaneous)Coding (social sciences)Open Education Studies
researchProduct

Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo

2019

DNA nanotechnology provides a toolbox for creating custom and precise nanostructures with nanometer-level accuracy. These nano-objects are often static by nature and serve as versatile templates for assembling various molecular components in a user-defined way. In addition to the static structures, the intrinsic programmability of DNA nanostructures allows the design of dynamic devices that can perform predefined tasks when triggered with external stimuli, such as drug delivery vehicles whose cargo display or release can be triggered with a specified physical or chemical cue in the biological environment. Here, we present a DNA origami nanocapsule that can be loaded with cargo and reversibl…

entsyymitMaterials scienceta221enzymesMetal NanoparticlesGeneral Physics and AstronomyNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesArticleBiophysical PhenomenaNanocapsulesDrug Delivery SystemsNanocapsulesDNA nanotechnologyFluorescence Resonance Energy TransferDNA origamiDNA nanotechnologyGeneral Materials ScienceA-DNApH controlGeneral EngineeringnanobiotekniikkaDNAHydrogen-Ion Concentration021001 nanoscience & nanotechnologyNanostructures0104 chemical sciencesFörster resonance energy transferTemplateFörster resonance energy transferdrug deliveryDrug deliveryNucleic Acid ConformationnanohiukkasetnanoparticlesGoldDNA origami0210 nano-technologyACS Nano
researchProduct

Dielectrophoretic trapping of DNA origami.

2008

In this thesis three-dimensional tube-shaped DNA-origamis were dielectrophoretically trapped within lithographically fabricated nanoelectrodes. The origamis had been premade while the electrodes were fabricated specifically for these experiments with two different gapsizes, 150 nm and 400 nm. The aim of the work was to capture individual nanotubes in the gap between the electrodes by utilizing the dielectrophoretic forces present in the structure when a solution containing the origamis was put onto the electrodes and a voltage was applied. It was observed during the experiments that the success of the dielectrophoretic trapping depended strongly on the trapping conditions. This caused the t…

ElectrophoresisMaterials scienceMacromolecular SubstancesSurface PropertiesMolecular ConformationNanotechnologyGeneral ChemistryTrappingMaterials testingDNADielectrophoresisMolecular conformationNanostructuresBiomaterialsElectromagnetic FieldsElectrodeMaterials TestingDNA origamiNanotechnologyGeneral Materials ScienceParticle SizeCrystallizationBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis

2015

We herein aim to report on the fabrication of DNA nano-heterostructures usable as a robust multi-functional analytical system to obtain multiple and complex data in parallel format from a single sample with unprecedented analytical performances. The ability of chemical information contained in the sequences of programmed DNA structures to organize matter made DNA become a unique material in “the nanoworld”. Such carefully designed DNA nanostructures can then be functionalized/templated with different biomolecules/nanomaterials as different as nanoparticles, nanowires, organic molecules, peptides, and proteins with controlled spacing on the nanometer scale (<10 nm). In this way, it is possib…

BioanalysisMaterials scienceCell SurvivalProtein Array AnalysisNanowireNanoparticleAntineoplastic AgentsNanotechnologyBiosensing TechniquesBiochemistryAnalytical ChemistryNanomaterialsDNA nanotechnology biosensors DNA origamichemistry.chemical_compoundDNA nanotechnologyElectrochemistryEnvironmental ChemistrySpectroscopychemistry.chemical_classificationDrug CarriersBiomoleculeNucleic Acid HybridizationProteinsDNANanostructuresMicroRNAsNucleic Acid ProbeschemistryBiosensorDNAThe Analyst
researchProduct

Developing Primary School Students’ Formal Geometric Definitions Knowledge by Connecting Origami and Technology

2019

In this paper, we present opportunities with the uses of origami and technology, in our case GeoGebra, in teaching formal geometric definitions for fifth-grade primary school students (11-12yrs). Applying origami in mathematical lessons is becoming to be recognized as a valuable tool for improving students’ mathematical knowledge. In previous studies, we developed origami and technology activities for high-school mathematics, but we wanted to explore if such approach would work in primary school as well. For this reason, we chose a flat origami model оf the crane and we used this model to introduce students to basic geometrical notions and definitions, such as points, lines, intersections o…

origamitformal geometric definitionsmatematiikkabusiness.industryGeneral MathematicsTeaching methodEducational technologyopetusalakouluEducationGeoGebraSoftwareorigamiComputer softwareMathematical softwareMathematics educationgeometriabusinessDiscovery learningComplement (set theory)International Electronic Journal of Mathematics Education
researchProduct

Dynamic DNA Origami Devices

2018

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled…

Mechanical movementnanotechnologyDNA nanotechnologyDNA origamiRoboticsSelf-assemblyMolecular devices
researchProduct