Search results for "oscillators"

showing 10 items of 39 documents

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Minimization of detent force in a 1 kW linear permanent magnet generator for the conversion of sea waves energy: Numerical and experimental validation

2015

Linear permanent magnet generators are widely considered for the direct conversion of energy contained in sea waves [1-3]. Both planar and tubular structures have been proposed [4-6] and all these structures present several advantages: relative high efficiency, simplicity of the structures, high sturdiness. However, as all other linear machines they present some drawbacks: oscillations in the movement, distortion in the generated electromotive force (emf), etc. In this paper we focus our attention on the parasitic oscillations of the translator which are caused by the presence of a high detent force. Detent force is generated by the fact that magnetic energy presents a minimum when the leng…

Generator (circuit theory)PhysicsForce Generators Magnetic flux Minimization Permanent magnet generators Distortion OscillatorsSettore ING-IND/11 - Fisica Tecnica AmbientaleElectromotive forceMagnetic energyMultiphysicsMagnetDistortionMechanical engineeringPermanent magnet synchronous generatorSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciMagnetic flux
researchProduct

Loss of coherence and dressing in QED

2006

The dynamics of a free charged particle, initially described by a coherent wave packet, interacting with an environment, i.e. the electromagnetic field characterized by a temperature $T$, is studied. Using the dipole approximation the exact expressions for the evolution of the reduced density matrix both in momentum and configuration space and the vacuum and the thermal contribution to decoherence, are obtained. The time behaviour of the coherence lengths in the two representations are given. Through the analysis of the dynamic of the field structure associated to the particle the vacuum contribution is shown to be linked to the birth of correlations between the single momentum components o…

Electromagnetic fieldPhysicsDensity matrixQuantum PhysicsPhotonQuantum decoherenceoscillatorsWave packetVirtual particleFOS: Physical sciencesAtomic and Molecular Physics and OpticsCharged particleharmonic oscillatorsQuantum electrodynamicsQuantum mechanicsbathsQuantum Physics (quant-ph)Coherence (physics)
researchProduct

Generation of Entangled Two-Photon Binomial States in Two Spatially Separate Cavities

2006

We propose a conditional scheme to generate entangled two-photon generalized binomial states inside two separate single-mode high-Q cavities. This scheme requires that the two cavities are initially prepared in entangled one-photon generalized binomial states and exploits the passage of two appropriately prepared two-level atoms one in each cavity. The measurement of the ground state of both atoms is finally required when they exit the cavities. We also give a brief evaluation of the experimental feasibility of the scheme.

Statistics and ProbabilityMandel parameteroscillatorsBinomial (polynomial)propertiesQuantum mechanicsScheme (mathematics)Complex systemPhysics::OpticsStatistical and Nonlinear PhysicsGround stateMathematical PhysicsMathematicsOpen Systems & Information Dynamics
researchProduct

Chaos and its Degradation-Promoting-Based Control in an Antithetic Integral Feedback Circuit

2022

This letter deals with a novel variant of antithetic integral feedback controller (AIFC) motifs which can feature robust perfect adaptation, a pervasive (desired) ability in natural (synthetic) biomolecular circuits, when coupled with a wide class of process networks to be regulated. Using the separation of timescales in the proposed kind of AIFC, here we find a reducedorder controller that captures the governing slow part of the original solutions under suitable assumptions. Inspired by R(ossler systems, we then make use of such a simpler controller to show that the antithetic circuit can exhibit chaotic behaviors with strange attractors, where the bifurcation from a homeostatic state to c…

kaaosteoriaControl and OptimizationoscillatorsComputer sciencechaosControl (management)elektroniset piiritbiological system modelingprocess controloskillaattoritCHAOS (operating system)säätöteoriaControl and Systems EngineeringControl theoryintegrated circuit modelingmallit (mallintaminen)matemaattiset mallitmathematical modelsDegradation (telecommunications)degradation
researchProduct

Measuring High-Order Interactions in Rhythmic Processes Through Multivariate Spectral Information Decomposition

2021

Many complex systems in physics, biology and engineering are modeled as dynamical networks and described using multivariate time series analysis. Recent developments have shown that the emergent dynamics of a network system are significantly affected by interactions involving multiple network nodes which cannot be described using pairwise links. While these higher-order interactions can be probed using information-theoretic measures, a rigorous framework to describe them in the frequency domain is still lacking. This work presents an approach for the spectral decomposition of multivariate information measures, capable of identifying higher-order synergistic and redundant interactions betwee…

Brain modelingMultivariate statisticsTechnology and EngineeringGeneral Computer ScienceTime series analysiComplex systemTIME-SERIESHEART-RATETime series analysisEEG analysisInformation theoryMOTOR IMAGERYMatrix decompositionCouplingFrequency-domain analysiRedundancyelectronic oscillatorsRedundancy (engineering)General Materials ScienceNETWORKTime domainFrequency-domain analysissignal processingTEMPERATUREParametric statisticsinformation theoryPhysicsFEEDBACKGeneral Engineeringclimate dynamicsTime measurementspectral analysisTK1-9971Mathematics and Statisticshigh-order interactionsconnectivityFrequency domainCouplingsElectrical engineering. Electronics. Nuclear engineeringBiological systeminformation dynamicsCoherenceIEEE Access
researchProduct

Nonlinear spectrum broadening cancellation by sinusoidal phase modulation

2017

International audience; We propose and experimentally demonstrate a new approach to dramatically reduce the spectral broadening induced by self-phase modulation occurring in a Kerr medium. By using a temporal sinusoidal phase modulation, we efficiently cancel to a large extend the chirp induced by the nonlinear effect. Experimental validation carried out in a passive or amplifying fiber confirm the interest of the technic for the mitigation of spectral expansion of long pulses.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryCross-phase modulationNonlinear optics02 engineering and technology01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsNonlinear system020210 optoelectronics & photonicsOpticsFiber optics amplifiers and oscillatorsNonlinear optics fibersPhase modulationModulation0103 physical sciences0202 electrical engineering electronic engineering information engineeringChirpSelf-phase modulationbusinessPhase modulationDoppler broadening
researchProduct

A nonlinear oscillators network devoted to image processing

2004

A contrast enhancement and image inverting tool using a lattice of uncoupled nonlinear oscillators is proposed. We show theoretically and numerically that the gray scale picture contrast is strongly enhanced even if this one is initially very small. An image inversion can be also obtained in real time with the same Cellular Nonlinear Network (CNN) without reconfiguration of the network. A possible electronic implementation of this CNN is finally discussed.

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer science[ PHYS.COND.CM-DS-NN ] Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]Image processing[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingCellular nonlinear networksTopology01 natural sciencesGrayscale010305 fluids & plasmasNonlinear oscillators[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingControl theoryLattice (order)0103 physical sciences[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]010306 general physicsEngineering (miscellaneous)ComputingMilieux_MISCELLANEOUSArtificial neural networkApplied MathematicsControl reconfigurationInversion (meteorology)neural networks[ SPI.TRON ] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/ElectronicsNonlinear systemComputer Science::Computer Vision and Pattern RecognitionModeling and SimulationNonlinear dynamics[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Analysis of Bias-Shift Effects in Free-Running and Injection-Locked Negative Resistance Oscillators

2012

In this paper, the interaction between DC and RF in quasi-sinusoidal free-running and injection-locked oscillators is addressed. To account for and illustrate in a user-friendly manner the bias-shift related effects stemming from such interaction, a frequency-domain method of analysis has been developed for a rather wide class of negative-resistance circuits. Grounding on a first-approximation exact perturbation-refined approach, it permits computationally efficient simulation of the oscillator behavior directly in terms of the DC and RF signals evolutions (dynamical complex envelopes). In fact, it allows the investigation of both steady-state and transient operation of the shifting-bias dr…

Injection-Locking Microwave Oscillators Shifting-Bias Computer-Aided designSettore ING-INF/01 - Elettronica
researchProduct

Phase-bistable patterns and cavity solitons induced by spatially periodic injection into vertical-cavity surface-emitting lasers

2014

Spatial rocking is a kind of resonant forcing able to convert a self-oscillatory system into a phase-bistable, pattern forming system, whereby the phase of the spatially averaged oscillation field locks to one of two values differing by $\ensuremath{\pi}$. We propose the spatial rocking in an experimentally relevant system---the vertical-cavity surface-emitting laser (VCSEL)---and demonstrate its feasibility through analytical and numerical tools applied to a VCSEL model. We show phase bistability, spatial patterns, such as roll patterns, domain walls, and phase (dark-ring) solitons, which could be useful for optical information storage and processing purposes.

Surface (mathematics)PhysicsField (physics)Bistabilitybusiness.industryOscillationPhase (waves)Physics::OpticsÒpticaLaserSEMICONDUCTOR-LASERS; OPTICAL-SYSTEMSAtomic and Molecular Physics and OpticsVertical-cavity surface-emitting laserlaw.inventionOpticslawDYNAMICS; OSCILLATORS; PIXELSSpatial ecologySWIFT-HOHENBERG EQUATION; LOCALIZED STRUCTURES;businessPhysical Review A
researchProduct