Search results for "p-Laplace"

showing 10 items of 15 documents

Inverse problems for $p$-Laplace type equations under monotonicity assumptions

2016

We consider inverse problems for $p$-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying $\sigma_1 \geq \sigma_2$ and having the same nonlinear Dirichlet-to-Neumann map must be identical. The proof is based on a monotonicity inequality and the unique continuation principle for $p$-Laplace type equations. In higher dimensions, where unique continuation is not known, we obtain a similar result for conductivities close to constant.

010101 applied mathematicsunique continuation principleMathematics - Analysis of PDEsinverse problems010102 general mathematicsFOS: MathematicsDirichlet-to-Neumann map35J92 35R300101 mathematics01 natural sciencesp-Laplace equationinversio-ongelmatAnalysis of PDEs (math.AP)
researchProduct

On the Fučík spectrum of the p-Laplacian with no-flux boundary condition

2023

In this paper, we study the quasilinear elliptic problem \begin{align*} \begin{aligned} -\Delta_{p} u&= a\l(u^+\r)^{p-1}-b\l(u^-\r)^{p-1} \quad && \text{in } \Omega,\\ u & = \text{constant} &&\text{on } \partial\Omega,\\ 0&=\int_{\partial \Omega}\left|\nabla u\right|^{p-2}\nabla u\cdot \nu \,\diff \sigma,&& \end{aligned} \end{align*} where the operator is the $p$-Laplacian and the boundary condition is of type no-flux. In particular, we consider the Fu\v{c}\'{\i}k spectrum of the $p$-Laplacian with no-flux boundary condition which is defined as the set $\fucik$ of all pairs $(a,b)\in\R^2$ such that the problem above has a nontrivial solution. It turns out…

Computational MathematicsApplied MathematicsGeneral EngineeringGeneral MedicineEigenvalue problem first nontrivial curve Fucik spectrum no-flux boundary condition p-Laplace differential operatorGeneral Economics Econometrics and FinanceAnalysis
researchProduct

Monotonicity and enclosure methods for the p-Laplace equation

2018

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

Convex hull35R30 (Primary) 35J92 (Secondary)EnclosurePerturbation (astronomy)Monotonic function01 natural sciencesConstructiveMathematics - Analysis of PDEsEnclosure methodFOS: Mathematics0101 mathematicsMathematicsInclusion detectionMonotonicity methodLaplace's equationmonotonicity methodApplied Mathematics010102 general mathematicsMathematical analysista111inclusion detection010101 applied mathematicsNonlinear systemMonotone polygonp-Laplace equationAnalysis of PDEs (math.AP)enclosure method
researchProduct

An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit

2010

We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.

Convex hullConvex analysisp-Laplace operatorGeneral MathematicsMathematical analysisConvex setDirichlet eigenvalueSubderivativeMathematics::Spectral TheoryCombinatoricsupper boundsSettore MAT/05 - Analisi MatematicaConvex polytopeConvex combinationAbsolutely convex setIsoperimetric inequalityMathematics
researchProduct

Enclosure method for the p-Laplace equation

2014

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

Convex hullGeneralization35R30 (Primary) 35J92 (Secondary)EnclosureMathematics::Classical Analysis and ODEsInverseMonotonic function01 natural sciencesTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsLaplace's equationMathematics::Functional AnalysisCalderón problemApplied Mathematics010102 general mathematicsMathematical analysisComputer Science Applications010101 applied mathematicsNonlinear systemSignal ProcessingJumpp-Laplace equationenclosure methodAnalysis of PDEs (math.AP)
researchProduct

Quantitative uniqueness estimates for pp-Laplace type equations in the plane

2016

Abstract In this article our main concern is to prove the quantitative unique estimates for the p -Laplace equation, 1 p ∞ , with a locally Lipschitz drift in the plane. To be more precise, let u ∈ W l o c 1 , p ( R 2 ) be a nontrivial weak solution to div ( | ∇ u | p − 2 ∇ u ) + W ⋅ ( | ∇ u | p − 2 ∇ u ) = 0  in  R 2 , where W is a locally Lipschitz real vector satisfying ‖ W ‖ L q ( R 2 ) ≤ M for q ≥ max { p , 2 } . Assume that u satisfies certain a priori assumption at 0. For q > max { p , 2 } or q = p > 2 , if ‖ u ‖ L ∞ ( R 2 ) ≤ C 0 , then u satisfies the following asymptotic estimates at R ≫ 1 inf | z 0 | = R sup | z − z 0 | 1 | u ( z ) | ≥ e − C R 1 − 2 q log R , where C > 0 depends …

Laplace's equationLaplace transformPlane (geometry)Applied MathematicsWeak solution010102 general mathematicsta111Type (model theory)Lipschitz continuity01 natural sciencesBeltrami equation010101 applied mathematicsCombinatoricspp-Laplace equationBeltrami equationstrong unique continuation principleUniqueness0101 mathematicsAnalysisMathematicsNonlinear Analysis: Theory, Methods and Applications
researchProduct

Gradient regularity for elliptic equations in the Heisenberg group

2009

Abstract We give dimension-free regularity conditions for a class of possibly degenerate sub-elliptic equations in the Heisenberg group exhibiting super-quadratic growth in the horizontal gradient; this solves an issue raised in [J.J. Manfredi, G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg group, Math. Ann. 339 (2007) 485–544], where only dimension dependent bounds for the growth exponent are given. We also obtain explicit a priori local regularity estimates, and cover the case of the horizontal p-Laplacean operator, extending some regularity proven in [A. Domokos, J.J. Manfredi, C 1 , α -regularity for p-harmonic functions in the Heisenberg group for …

Mathematics - Differential GeometryMathematics(all)Pure mathematicsp-LaplaceanGeneral MathematicsOperator (physics)Mathematical analysisDegenerate energy levelsHeisenberg groupWeak solutions35J60RegularityElliptic operatorMathematics - Analysis of PDEsDifferential Geometry (math.DG)Cover (topology)Euclidean geometryFOS: MathematicsHeisenberg groupExponentLinear equationAnalysis of PDEs (math.AP)MathematicsAdvances in Mathematics
researchProduct

Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems

2013

In this paper we prove a sharp lower bound for the first non-trivial Neumann eigenvalue μ1(Ω) for the p-Laplace operator (p > 1) in a Lipschitz bounded domain Ω in ℝn. Our estimate does not require any convexity assumption on Ω and it involves the best isoperimetric constant relative to Ω. In a suitable class of convex planar domains, our bound turns out to be better than the one provided by the Payne—Weinberger inequality.

Pure mathematicsp-Laplace operatorGeneral MathematicsMathematics::Spectral TheoryLipschitz continuityUpper and lower boundsDomain (mathematical analysis)ConvexityCombinatoricslower boundsMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsNeumann eigenvalueIsoperimetric inequalityLaplace operatorEigenvalues and eigenvectorsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Non-homogeneous Dirichlet problems with concave-convex reaction

2022

The variational methods are adopted for establishing the existence of at least two nontrivial solutions for a Dirichlet problem driven by a non-homogeneous differential operator of p-Laplacian type. A large class of nonlinear terms is considered, covering the concave-convex case. In particular, two positive solutions to the problem are obtained under a (p -1)-superlinear growth at infinity, provided that a behaviour less than (p -1)-linear of the nonlinear term in a suitable set is requested.

nonlinear elliptic problemmultiple solutionsVariational methodsp-Laplace operatorSettore MAT/05 - Analisi MatematicaGeneral Mathematicscritical pointRendiconti Lincei - Matematica e Applicazioni
researchProduct

Gradient and Lipschitz Estimates for Tug-of-War Type Games

2021

We define a random step size tug-of-war game and show that the gradient of a value function exists almost everywhere. We also prove that the gradients of value functions are uniformly bounded and converge weakly to the gradient of the corresponding $p$-harmonic function. Moreover, we establish an improved Lipschitz estimate when boundary values are close to a plane. Such estimates are known to play a key role in the higher regularity theory of partial differential equations. The proofs are based on cancellation and coupling methods as well as an improved version of the cylinder walk argument. peerReviewed

osittaisdifferentiaaliyhtälöt91A15 35B65 35J92gradient regularityApplied MathematicsTug of warMathematical analysisstochastic two player zero-sum gameType (model theory)Lipschitz continuityComputational MathematicsMathematics - Analysis of PDEsLipschitz estimateBellman equationtug-of-war with noiseFOS: MathematicsUniform boundednesspeliteoriaAlmost everywherep-LaplaceValue (mathematics)AnalysisAnalysis of PDEs (math.AP)Mathematicsstokastiset prosessit
researchProduct