Search results for "p-p"
showing 10 items of 3659 documents
One-loop integrals with XLOOPS-GiNaC
2001
We present a new algorithm for the reduction of one-loop tensor Feynman integrals within the framework of the XLOOPS project, covering both mathematical and programming aspects. The new algorithm supplies a clean way to reduce the one-loop one-, two- and three-point Feynman integrals with arbitrary tensor rank and powers of the propagators to a basis of simple integrals. We also present a new method of coding XLOOPS in C++ using the GiNaC library.
Top-quark mass measurements at the LHC: alternative methods
2016
Alternative top quark mass determinations can provide inputs to the world average with orthogonal systematic uncertainties and may help to refine the interpretation of the standard method. Among a number of recent results I focus on the extractions by ATLAS and CMS of the top quark pole mass from the top quark pair and tt + 1 jet production cross-section, which have now reached a precision of 1%. Alternative top quark mass determinations can provide inputs to the world average with orthogonal systematic uncertainties and may help to refine the interpretation of the standard method. Among a number of recent results I focus on the extractions by ATLAS and CMS of the top quark pole mass from t…
The planar two-body problem for spheroids and disks
2021
We outline a new method suggested by Conway (2016) for solving the two-body problem for solid bodies of spheroidal or ellipsoidal shape. The method is based on integrating the gravitational potential of one body over the surface of the other body. When the gravitational potential can be analytically expressed (as for spheroids or ellipsoids), the gravitational force and mutual gravitational potential can be formulated as a surface integral instead of a volume integral, and solved numerically. If the two bodies are infinitely thin disks, the surface integral has an analytical solution. The method is exact as the force and mutual potential appear in closed-form expressions, and does not invol…
Ferromagnetic gyroscopes for tests of fundamental physics
2020
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ measurement of the magnetic field and a technique to reduce the field below the threshold for w…
Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams
2000
Present and future high-precision tests of the Standard Model and beyond for the fundamental constituents and interactions in Nature are demanding complex perturbative calculations involving multi-leg and multi-loop Feynman diagrams. Currently, large effort is devoted to the search for closed expressions of loop integrals, written whenever possible in terms of known - often hypergeometric-type - functions. In this work, the scalar three-point function is re-evaluated by means of generalized hypergeometric functions of two variables. Finally, use is made of the connection between such Appell functions and dilogarithms coming from a previous investigation, to recover well-known results.
Using machine learning to disentangle LHC signatures of Dark Matter candidates
2019
We study the prospects of characterising Dark Matter at colliders using Machine Learning (ML) techniques. We focus on the monojet and missing transverse energy (MET) channel and propose a set of benchmark models for the study: a typical WIMP Dark Matter candidate in the form of a SUSY neutralino, a pseudo-Goldstone impostor in the shape of an Axion-Like Particle, and a light Dark Matter impostor whose interactions are mediated by a heavy particle. All these benchmarks are tensioned against each other, and against the main SM background ($Z$+jets). Our analysis uses both the leading-order kinematic features as well as the information of an additional hard jet. We explore different representa…
Three-neutrino mixing after the first results from K2K and KamLAND
2003
We analyze the impact of the data on long baseline \nu_\mu disappearance from the K2K experiment and reactor \bar\nu_e disappearance from the KamLAND experiment on the determination of the leptonic three-generation mixing parameters. Performing an up-to-date global analysis of solar, atmospheric, reactor and long baseline neutrino data in the context of three-neutrino oscillations, we determine the presently allowed ranges of masses and mixing and we consistently derive the allowed magnitude of the elements of the leptonic mixing matrix. We also quantify the maximum allowed contribution of \Delta m^2_{21} oscillations to CP-odd and CP-even observables at future long baseline experiments.
Measuring the deviation of the 2–3 lepton mixing from maximal with atmospheric neutrinos
2004
The measurement of the deviation of the 2-3 leptonic mixing from maximal, D_23 = 1/2 - sin^2(theta_23), is one of the key issues for understanding the origin of the neutrino masses and mixing. In the three-neutrino context we study the dependence of various observables in the atmospheric neutrinos on D_23. We perform a global three-neutrino analysis of the atmospheric and reactor neutrino data taking into account the effects of both the oscillations driven by the "solar" parameters (Delta_m_21^2 and theta_12) and the 1-3 mixing. The departure from the one-dominant mass scale approximation results into the shift of the 2-3 mixing from maximal by Delta_sin^2(theta_23) ~ 0.04, so that D_23 ~ 0…
Hints of an axion-like particle mixing in the GeV gamma-ray blazar data?
2013
Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of thi…
Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB
2009
We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H-0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma(8)(Omega(m)/0.25)(0.41) = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a ACDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain Sigma m(v) < 0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations…