Search results for "p-p"

showing 10 items of 3659 documents

One-loop integrals with XLOOPS-GiNaC

2001

We present a new algorithm for the reduction of one-loop tensor Feynman integrals within the framework of the XLOOPS project, covering both mathematical and programming aspects. The new algorithm supplies a clean way to reduce the one-loop one-, two- and three-point Feynman integrals with arbitrary tensor rank and powers of the propagators to a basis of simple integrals. We also present a new method of coding XLOOPS in C++ using the GiNaC library.

AlgebraPhysicsHigh Energy Physics - PhenomenologyParticle physicsHigh Energy Physics - Phenomenology (hep-ph)Hardware and ArchitectureFeynman integralTensor rankComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONGeneral Physics and AstronomyPropagatorFOS: Physical sciences
researchProduct

Top-quark mass measurements at the LHC: alternative methods

2016

Alternative top quark mass determinations can provide inputs to the world average with orthogonal systematic uncertainties and may help to refine the interpretation of the standard method. Among a number of recent results I focus on the extractions by ATLAS and CMS of the top quark pole mass from the top quark pair and tt + 1 jet production cross-section, which have now reached a precision of 1%. Alternative top quark mass determinations can provide inputs to the world average with orthogonal systematic uncertainties and may help to refine the interpretation of the standard method. Among a number of recent results I focus on the extractions by ATLAS and CMS of the top quark pole mass from t…

Alternative methodsPhysicsTop quarkParticle physicsLarge Hadron Colliderhep-exHigh Energy Physics::PhenomenologyFOS: Physical scienceshep-phJet (particle physics)Mass measurementHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)medicine.anatomical_structureAtlas (anatomy)Physics::Atomic and Molecular ClustersmedicineHigh Energy Physics::ExperimentParticle Physics - ExperimentParticle Physics - Phenomenology
researchProduct

The planar two-body problem for spheroids and disks

2021

We outline a new method suggested by Conway (2016) for solving the two-body problem for solid bodies of spheroidal or ellipsoidal shape. The method is based on integrating the gravitational potential of one body over the surface of the other body. When the gravitational potential can be analytically expressed (as for spheroids or ellipsoids), the gravitational force and mutual gravitational potential can be formulated as a surface integral instead of a volume integral, and solved numerically. If the two bodies are infinitely thin disks, the surface integral has an analytical solution. The method is exact as the force and mutual potential appear in closed-form expressions, and does not invol…

Angular momentumInertial frame of reference010504 meteorology & atmospheric sciencesFOS: Physical sciencesTwo-body problem01 natural sciencesVolume integralGravitational potential0103 physical sciences010303 astronomy & astrophysicsMathematical Physics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430Applied MathematicsSurface integralEquations of motionAstronomy and AstrophysicsComputational Physics (physics.comp-ph)EllipsoidComputational MathematicsClassical mechanicsSpace and Planetary ScienceModeling and SimulationPhysics - Computational PhysicsAstrophysics - Earth and Planetary AstrophysicsCelestial Mechanics and Dynamical Astronomy
researchProduct

Ferromagnetic gyroscopes for tests of fundamental physics

2020

A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ measurement of the magnetic field and a technique to reduce the field below the threshold for w…

Angular momentumgyroscopePhysics and Astronomy (miscellaneous)Field (physics)Atomic Physics (physics.atom-ph)Materials Science (miscellaneous)physics beyond the standard modelFOS: Physical sciencesApplied Physics (physics.app-ph)01 natural sciences530Physics - Atomic Physics010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesLibrationddc:530Electrical and Electronic Engineering010306 general physicsLarmor precessionSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMeissner effectFerromagnetism gyroscope physics beyond the standard model Meissner effectPhysics - Applied PhysicsferromagnetismAtomic and Molecular Physics and OpticsMagnetic fieldMeissner effectFerromagnetismPrecessionQuantum Physics (quant-ph)
researchProduct

Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams

2000

Present and future high-precision tests of the Standard Model and beyond for the fundamental constituents and interactions in Nature are demanding complex perturbative calculations involving multi-leg and multi-loop Feynman diagrams. Currently, large effort is devoted to the search for closed expressions of loop integrals, written whenever possible in terms of known - often hypergeometric-type - functions. In this work, the scalar three-point function is re-evaluated by means of generalized hypergeometric functions of two variables. Finally, use is made of the connection between such Appell functions and dilogarithms coming from a previous investigation, to recover well-known results.

Appell functionLoop integralDilogarithmAppell seriesApplied MathematicsScalar (mathematics)Feynman diagramFOS: Physical sciencesFísicaMathematical Physics (math-ph)Generalized hypergeometric functionLoop integralHypergeometric seriesAlgebraIntegral calculussymbols.namesakeComputational MathematicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)symbolsFeynman diagramHypergeometric functionMathematical PhysicsPochhammer symbolMathematics
researchProduct

Using machine learning to disentangle LHC signatures of Dark Matter candidates

2019

We study the prospects of characterising Dark Matter at colliders using Machine Learning (ML) techniques. We focus on the monojet and missing transverse energy (MET) channel and propose a set of benchmark models for the study: a typical WIMP Dark Matter candidate in the form of a SUSY neutralino, a pseudo-Goldstone impostor in the shape of an Axion-Like Particle, and a light Dark Matter impostor whose interactions are mediated by a heavy particle. All these benchmarks are tensioned against each other, and against the main SM background ($Z$+jets). Our analysis uses both the leading-order kinematic features as well as the information of an additional hard jet. We explore different representa…

Artificial neural network010308 nuclear & particles physicsbusiness.industryComputer sciencePhysicsQC1-999Dark matterFOS: Physical sciencesGeneral Physics and AstronomySupersymmetryMachine learningcomputer.software_genre01 natural sciencesConvolutional neural networkHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Robustness (computer science)0103 physical sciencesPrincipal component analysisProbability distributionArtificial intelligence010306 general physicsbusinessLight dark mattercomputerSciPost Physics
researchProduct

Three-neutrino mixing after the first results from K2K and KamLAND

2003

We analyze the impact of the data on long baseline \nu_\mu disappearance from the K2K experiment and reactor \bar\nu_e disappearance from the KamLAND experiment on the determination of the leptonic three-generation mixing parameters. Performing an up-to-date global analysis of solar, atmospheric, reactor and long baseline neutrino data in the context of three-neutrino oscillations, we determine the presently allowed ranges of masses and mixing and we consistently derive the allowed magnitude of the elements of the leptonic mixing matrix. We also quantify the maximum allowed contribution of \Delta m^2_{21} oscillations to CP-odd and CP-even observables at future long baseline experiments.

Astrofísica nuclearNuclear and High Energy PhysicsParticle physicsSolar neutrinoFOS: Physical sciencesContext (language use)01 natural sciences7. Clean energyPartícules (Física nuclear)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrinsNeutrinos010306 general physicsNeutrino oscillationMixing (physics)Particles (Nuclear physics)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyObservableHigh Energy Physics - Phenomenology13. Climate actionK2K experimentAstronomiaCP violationNuclear astrophysicsHigh Energy Physics::ExperimentNeutrinoPhysical Review D
researchProduct

Measuring the deviation of the 2–3 lepton mixing from maximal with atmospheric neutrinos

2004

The measurement of the deviation of the 2-3 leptonic mixing from maximal, D_23 = 1/2 - sin^2(theta_23), is one of the key issues for understanding the origin of the neutrino masses and mixing. In the three-neutrino context we study the dependence of various observables in the atmospheric neutrinos on D_23. We perform a global three-neutrino analysis of the atmospheric and reactor neutrino data taking into account the effects of both the oscillations driven by the "solar" parameters (Delta_m_21^2 and theta_12) and the 1-3 mixing. The departure from the one-dominant mass scale approximation results into the shift of the 2-3 mixing from maximal by Delta_sin^2(theta_23) ~ 0.04, so that D_23 ~ 0…

Astrofísica nuclearNuclear and High Energy PhysicsParticle physicsSolar neutrinoFOS: Physical sciencesContext (language use)01 natural sciencesPartícules (Física nuclear)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesInvariant massSensitivity (control systems)010306 general physicsNeutrino oscillationMixing (physics)Particle Physics - PhenomenologyParticles (Nuclear physics)Physics010308 nuclear & particles physicsHigh Energy Physics - Phenomenology13. Climate actionAstronomiaHigh Energy Physics::ExperimentNuclear astrophysicsNeutrinoLeptonPhysical Review D
researchProduct

Hints of an axion-like particle mixing in the GeV gamma-ray blazar data?

2013

Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of thi…

AstrofísicaActive galactic nucleusPhotonAxionsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesPartícules (Física nuclear)Spectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBlazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsActive galactic nucleiRange (particle radiation)Cosmologia010308 nuclear & particles physicsGamma rayAstronomy and AstrophysicsQuasarHigh Energy Physics - Phenomenology13. Climate actionAstrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeJournal of Cosmology and Astroparticle Physics
researchProduct

Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB

2009

We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H-0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma(8)(Omega(m)/0.25)(0.41) = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a ACDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain Sigma m(v) < 0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations…

AstrofísicaAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrinsNeutrinos010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsSpectral indexCosmologia010308 nuclear & particles physicsEquation of state (cosmology)SupernovesAstronomy and AstrophysicsCoupling (probability)RedshiftCosmologyHigh Energy Physics - PhenomenologySupernovaeDark energyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct