Search results for "p24"

showing 10 items of 182 documents

The Expression of NOX From Synthetic Promoters Reveals an Important Role of the Redox Status in Regulating Secondary Metabolism of

2020

Redox cofactors play a pivotal role in primary cellular metabolism, whereas the clear link between redox status and secondary metabolism is still vague. In this study we investigated effects of redox perturbation on the production of erythromycin in Saccharopolyspora erythraea by expressing the water-forming NADH oxidase (NOX) from Streptococcus pneumonia at different levels with synthetic promoters. The expression of NOX reduced the intracellular [NADH]/[NAD+] ratio significantly in S. erythraea which resulted in an increased production of erythromycin by 19∼29% and this increment rose to 60% as more oxygen was supplied. In contrast, the lower redox ratio resulted in a decreased production…

0301 basic medicineHistologylcsh:BiotechnologyBiomedical EngineeringBioengineering02 engineering and technologyRedoxCofactorredox regulation03 medical and health scienceschemistry.chemical_compoundBiosynthesislcsh:TP248.13-248.65Guanosine monophosphateSecondary metabolismOriginal Researchsecondary metabolismbiologyBioengineering and Biotechnologyc-di-GMP021001 nanoscience & nanotechnologybiology.organism_classificationSaccharopolyspora erythraea030104 developmental biologysynthetic promotersBiochemistrychemistryNADH oxidasebiology.proteinDiguanylate cyclaseSaccharopolyspora erythraeaNAD+ kinase0210 nano-technologyBiotechnologyFrontiers in bioengineering and biotechnology
researchProduct

Selective Cytotoxic Activity of Prodigiosin@halloysite Nanoformulation

2020

Prodigiosin, a bioactive secondary metabolite produced by Serratia marcescens, is an effective proapoptotic agent against various cancer cell lines, with little or no toxicity toward normal cells. The hydrophobicity of prodigiosin limits its use for medical and biotechnological applications, these limitations, however, can be overcome by using nanoscale drug carriers, resulting in promising formulations for target delivery systems with great potential for anticancer therapy. Here we report on prodigiosin-loaded halloysite-based nanoformulation and its effects on viability of malignant and non-malignant cells. We have found that prodigiosin-loaded halloysite nanotubes inhibit human epithelia…

0301 basic medicineHistologylcsh:BiotechnologyBiomedical EngineeringBioengineering02 engineering and technologyhalloysite nanotubesengineering.materialHalloysiteProdigiosin03 medical and health scienceschemistry.chemical_compoundcomet assaylcsh:TP248.13-248.65Cytotoxic T cellcancerOriginal Researchgenotoxic effectanti-cancer drugsbiologyChemistryBioengineering and Biotechnology021001 nanoscience & nanotechnologybiology.organism_classificationmalignant cellsComet assay030104 developmental biologyprodigiosinDrug deliveryToxicitySerratia marcescensdrug deliveryCancer researchengineering0210 nano-technologyDrug carrierBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

Crossing kingdoms:How can art open up new ways of thinking about science?

2020

“Crossing Kingdoms” is an artist-led experiment in the biological fusion of mammalian and yeast cells and the cultural discussions of these phenomena. We present this collaboration as an experiment in responsible research and innovation (RRI), an institutionalized format for ensuring that researchers reflect on the wider social dimensions of their work. Our methods challenged us as researchers to reflect on interdisciplinary collaboration and the possibility of innovating in biology for artistic purposes, challenged audiences to reflect on biological boundaries, and challenged both groups to reflect on what it means to be responsible in science. We conclude that our experiment in RRI was su…

0301 basic medicineHistologylcsh:BiotechnologyBiomedical Engineeringresponsible research and innovationhybrid taxaBioengineering02 engineering and technologySocial dimension03 medical and health sciencesSynthetic biologyKingdominterdisciplinaritylcsh:TP248.13-248.65responsible research and innovation (RRI)Responsible Research and InnovationBioengineering and Biotechnologyart-science collaboration021001 nanoscience & nanotechnology030104 developmental biologyPerspectiveStandard protocolEngineering ethicssynthetic biology0210 nano-technologyBiotechnology
researchProduct

Role of saccharomyces cerevisiae nutrient signaling pathways during winemaking: a phenomics approach

2020

The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyze…

0301 basic medicineHistologylcsh:BiotechnologySaccharomyces cerevisiaeBiomedical EngineeringWineBioengineering02 engineering and technologySaccharomyces cerevisiaeNutrient signaling03 medical and health scienceslcsh:TP248.13-248.65PKARas2wineTranscription factorWinemaking2. Zero hungerFermentation in winemakingchemistry.chemical_classificationGln3biologynutrient signaling021001 nanoscience & nanotechnologybiology.organism_classificationYeast3. Good health030104 developmental biologyEnzymeBiochemistrychemistrySnf1 kinase[SDE]Environmental SciencesFermentation0210 nano-technologyglucose repressionTORC1 pathwayBiotechnology
researchProduct

Relevance of NADH Dehydrogenase and Alternative Two-Enzyme Systems for Growth of Corynebacterium glutamicum With Glucose, Lactate, and Acetate

2021

The oxidation of NADH with the concomitant reduction of a quinone is a crucial step in the metabolism of respiring cells. In this study, we analyzed the relevance of three different NADH oxidation systems in the actinobacterial model organism Corynebacterium glutamicum by characterizing defined mutants lacking the non-proton-pumping NADH dehydrogenase Ndh (Δndh) and/or one of the alternative NADH-oxidizing enzymes, L-lactate dehydrogenase LdhA (ΔldhA) and malate dehydrogenase Mdh (Δmdh). Together with the menaquinone-dependent L-lactate dehydrogenase LldD and malate:quinone oxidoreductase Mqo, the LdhA-LldD and Mdh-Mqo couples can functionally replace Ndh activity. In glucose minimal medium…

0301 basic medicineHistologylcsh:Biotechnologyrespiratory chain030106 microbiologyMutantBiomedical EngineeringRespiratory chainmalate dehydrogenaseBioengineeringDehydrogenaseMalate dehydrogenaseCorynebacterium glutamicum03 medical and health scienceschemistry.chemical_compoundNAD+/NADH ratioddc:570lcsh:TP248.13-248.65Lactate dehydrogenaseOriginal ResearchbiologyWild typeNADH dehydrogenaseBioengineering and BiotechnologyNADH dehydrogenaselactate dehydrogenaseSugR030104 developmental biologyBiochemistrychemistrybiology.proteinmalate:quinone oxidoreductaseBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, …

2020

In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. G…

0301 basic medicineMating typeHistologylcsh:BiotechnologySaccharomyces cerevisiaeBiomedical EngineeringBioengineeringLocus (genetics)Ethanol tolerance02 engineering and technologySaccharomyces cerevisiaeBiologyGenome sequencingGenome03 medical and health scienceslcsh:TP248.13-248.65Artificial hybridWine fermentationHybridFermentation in winemakingGeneticsfungifood and beverages021001 nanoscience & nanotechnologybiology.organism_classificationYeastethanol tolerancegenome sequencing030104 developmental biologyS. uvarumwine fermentationartificial hybridRNA-seqPloidy0210 nano-technologyBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

New waves underneath the purple strain.

2016

Summary Successful merging of chemical and biotechnological operations is essential to achieve cost‐efficient industrialization of bio‐based processes. The demonstration of the use of syngas, derived from microwave assisted pyrolysis of municipal solid waste, for the improved growth and poly‐3‐hydroxybutyrate production in Rhodospirillium rubrum, stands out as an example of the synergistic contribution of chemical engineering and applied microbiology to sustainable biomaterial manufacturing, paving the way to similar applications for other syngas derived bioproducts.

0301 basic medicineMunicipal solid wastelcsh:Biotechnology030106 microbiologyHydroxybutyratesBioengineeringRhodospirillum rubrumSolid WasteApplied Microbiology and BiotechnologyBiochemistryMicrowave assisted12. Responsible consumption03 medical and health sciencesBioproductslcsh:TP248.13-248.65Process engineeringHighlightbusiness.industryBiotechnology030104 developmental biologyBiodegradation EnvironmentalEnvironmental sciencebusinessPyrolysisSyngasBiotechnologyMicrobial biotechnology
researchProduct

Long-Term in vivo Evaluation of Orthotypical and Heterotypical Bioengineered Human Corneas.

2020

Purpose: Human cornea substitutes generated by tissue engineering currently require limbal stem cells for the generation of orthotypical epithelial cell cultures. We recently reported that bioengineered corneas can be fabricated in vitro from a heterotypical source obtained from Wharton’s jelly in the human umbilical cord (HWJSC). Methods: Here, we generated a partial thickness cornea model based on plastic compression nanostructured fibrin-agarose biomaterials with cornea epithelial cells on top, as an orthotypical model (HOC), or with HWJSC, as a heterotypical model (HHC), and determined their potential in vivo usefulness by implantation in an animal model. Results: No major side effects …

0301 basic medicinePathology02 engineering and technology:Chemicals and Drugs::Carbohydrates::Polysaccharides::Sepharose [Medical Subject Headings]Umbilical cord:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans [Medical Subject Headings]heterotypical human corneaTissue engineering:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Lagomorpha::Rabbits [Medical Subject Headings]Cornea:Analytical Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Optical Imaging::Tomography Optical::Tomography Optical Coherence [Medical Subject Headings]:Organisms::Eukaryota::Animals [Medical Subject Headings]:Technology and Food and Beverages::Technology Industry and Agriculture::Manufactured Materials::Biomedical and Dental Materials::Biocompatible Materials [Medical Subject Headings]Slit lamp021001 nanoscience & nanotechnologymedicine.anatomical_structure:Anatomy::Sense Organs::Eye::Anterior Eye Segment::Cornea [Medical Subject Headings]tissue engineeringStem cell0210 nano-technologyBiotechnology:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Blood Proteins::Fibrin [Medical Subject Headings]medicine.medical_specialtyHistologyStromal celllcsh:BiotechnologyBiomedical EngineeringCélulas madre mesenquimatosasBioengineering:Anatomy::Embryonic Structures::Fetus::Umbilical Cord [Medical Subject Headings]:Analytical Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Models Animal [Medical Subject Headings]03 medical and health sciencesIn vivolcsh:TP248.13-248.65medicine:Anatomy::Cells::Connective Tissue Cells::Stromal Cells::Mesenchymal Stromal Cells [Medical Subject Headings]:Technology and Food and Beverages::Technology Industry and Agriculture::Engineering::Bioengineering::Cell Engineering::Tissue Engineering [Medical Subject Headings]Wharton’s jelly stem cellsbioengineered corneabusiness.industryTissue engineringeye diseasesEpitheliumCórnea:Anatomy::Cells::Epithelial Cells [Medical Subject Headings]:Anatomy::Tissues::Connective Tissue::Wharton Jelly [Medical Subject Headings]030104 developmental biologyIngeniería de tejidossense organsbusinessartificial cornea
researchProduct

The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses

2018

Biological nitrogen fixation is an important source of bioavailable nitrogen in Sphagnum dominated peatlands. Sphagnum mosses harbor a diverse microbiome including nitrogen-fixing and methane (CH4) oxidizing bacteria. The inhibitory effect of oxygen on microbial nitrogen fixation is documented for many bacteria. However, the role of nitrogen-fixing methanotrophs in nitrogen supply to Sphagnum peat mosses is not well explored. Here, we investigated the role of both oxygen and methane on nitrogen fixation in subarctic Sphagnum peat mosses. Five species of Sphagnum mosses were sampled from two mesotrophic and three oligotrophic sites within the Lakkasuo peatland in Orivesi, central Finland. Mo…

0301 basic medicinePeatMethane oxidationPeatlandSphagnum mosslcsh:Biotechnology030106 microbiologyBiophysicslcsh:QR1-502chemistry.chemical_elementDiazotrophyApplied Microbiology and BiotechnologySphagnum16S rRNA amplicon sequencinglcsh:Microbiology03 medical and health sciencesdiazotrophylcsh:TP248.13-248.65rRNAGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Biomass (ecology)biologyamplicon sequencingmethane oxidationAlphaproteobacteria15. Life on landbiology.organism_classificationSubarctic climateNitrogenOxygen030104 developmental biologyhappichemistry13. Climate actionEnvironmental chemistryEcological MicrobiologyAnaerobic oxidation of methaneNitrogen fixationpeatlandOriginal ArticleAMB Express
researchProduct

Influence of the Fabrication Accuracy of Hot-Embossed PCL Scaffolds on Cell Growths

2020

Polycaprolactone (PCL) is a biocompatible and biodegradable polymer widely used for the realization of 3D scaffold for tissue engineering applications. The hot embossing technique (HE) allows the obtainment of PCL scaffolds with a regular array of micro pillars on their surface. The main drawback affecting this kind of micro fabrication process is that such structural superficial details can be damaged when detaching the replica from the mold. Therefore, the present study has focused on the optimization of the HE processes through the development of an analytical model for the prediction of the demolding force as a function of temperature. This model allowed calculating the minimum demoldin…

0301 basic medicineScaffoldHistologyFabricationMaterials scienceScanning electron microscopelcsh:BiotechnologyBiomedical EngineeringBioengineering02 engineering and technologydemolding forcemedicine.disease_causeMicrostructured scaffold03 medical and health scienceschemistry.chemical_compoundmicrostructured scaffoldsTissue engineeringpolycaprolactoneMoldlcsh:TP248.13-248.65medicineCell viabilityCcell viabilityOriginal ResearchBioengineering and Biotechnology021001 nanoscience & nanotechnologyMicrostructureBiodegradable polymer030104 developmental biologychemistryhot embossingPolycaprolactone0210 nano-technologyCell viability; Demolding force; Hot embossing; Microstructured scaffolds; PolycaprolactoneBiotechnologyBiomedical engineeringFrontiers in Bioengineering and Biotechnology
researchProduct