Search results for "p24"
showing 10 items of 182 documents
The Expression of NOX From Synthetic Promoters Reveals an Important Role of the Redox Status in Regulating Secondary Metabolism of
2020
Redox cofactors play a pivotal role in primary cellular metabolism, whereas the clear link between redox status and secondary metabolism is still vague. In this study we investigated effects of redox perturbation on the production of erythromycin in Saccharopolyspora erythraea by expressing the water-forming NADH oxidase (NOX) from Streptococcus pneumonia at different levels with synthetic promoters. The expression of NOX reduced the intracellular [NADH]/[NAD+] ratio significantly in S. erythraea which resulted in an increased production of erythromycin by 19∼29% and this increment rose to 60% as more oxygen was supplied. In contrast, the lower redox ratio resulted in a decreased production…
Selective Cytotoxic Activity of Prodigiosin@halloysite Nanoformulation
2020
Prodigiosin, a bioactive secondary metabolite produced by Serratia marcescens, is an effective proapoptotic agent against various cancer cell lines, with little or no toxicity toward normal cells. The hydrophobicity of prodigiosin limits its use for medical and biotechnological applications, these limitations, however, can be overcome by using nanoscale drug carriers, resulting in promising formulations for target delivery systems with great potential for anticancer therapy. Here we report on prodigiosin-loaded halloysite-based nanoformulation and its effects on viability of malignant and non-malignant cells. We have found that prodigiosin-loaded halloysite nanotubes inhibit human epithelia…
Crossing kingdoms:How can art open up new ways of thinking about science?
2020
“Crossing Kingdoms” is an artist-led experiment in the biological fusion of mammalian and yeast cells and the cultural discussions of these phenomena. We present this collaboration as an experiment in responsible research and innovation (RRI), an institutionalized format for ensuring that researchers reflect on the wider social dimensions of their work. Our methods challenged us as researchers to reflect on interdisciplinary collaboration and the possibility of innovating in biology for artistic purposes, challenged audiences to reflect on biological boundaries, and challenged both groups to reflect on what it means to be responsible in science. We conclude that our experiment in RRI was su…
Role of saccharomyces cerevisiae nutrient signaling pathways during winemaking: a phenomics approach
2020
The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyze…
Relevance of NADH Dehydrogenase and Alternative Two-Enzyme Systems for Growth of Corynebacterium glutamicum With Glucose, Lactate, and Acetate
2021
The oxidation of NADH with the concomitant reduction of a quinone is a crucial step in the metabolism of respiring cells. In this study, we analyzed the relevance of three different NADH oxidation systems in the actinobacterial model organism Corynebacterium glutamicum by characterizing defined mutants lacking the non-proton-pumping NADH dehydrogenase Ndh (Δndh) and/or one of the alternative NADH-oxidizing enzymes, L-lactate dehydrogenase LdhA (ΔldhA) and malate dehydrogenase Mdh (Δmdh). Together with the menaquinone-dependent L-lactate dehydrogenase LldD and malate:quinone oxidoreductase Mqo, the LdhA-LldD and Mdh-Mqo couples can functionally replace Ndh activity. In glucose minimal medium…
Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, …
2020
In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. G…
New waves underneath the purple strain.
2016
Summary Successful merging of chemical and biotechnological operations is essential to achieve cost‐efficient industrialization of bio‐based processes. The demonstration of the use of syngas, derived from microwave assisted pyrolysis of municipal solid waste, for the improved growth and poly‐3‐hydroxybutyrate production in Rhodospirillium rubrum, stands out as an example of the synergistic contribution of chemical engineering and applied microbiology to sustainable biomaterial manufacturing, paving the way to similar applications for other syngas derived bioproducts.
Long-Term in vivo Evaluation of Orthotypical and Heterotypical Bioengineered Human Corneas.
2020
Purpose: Human cornea substitutes generated by tissue engineering currently require limbal stem cells for the generation of orthotypical epithelial cell cultures. We recently reported that bioengineered corneas can be fabricated in vitro from a heterotypical source obtained from Wharton’s jelly in the human umbilical cord (HWJSC). Methods: Here, we generated a partial thickness cornea model based on plastic compression nanostructured fibrin-agarose biomaterials with cornea epithelial cells on top, as an orthotypical model (HOC), or with HWJSC, as a heterotypical model (HHC), and determined their potential in vivo usefulness by implantation in an animal model. Results: No major side effects …
The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses
2018
Biological nitrogen fixation is an important source of bioavailable nitrogen in Sphagnum dominated peatlands. Sphagnum mosses harbor a diverse microbiome including nitrogen-fixing and methane (CH4) oxidizing bacteria. The inhibitory effect of oxygen on microbial nitrogen fixation is documented for many bacteria. However, the role of nitrogen-fixing methanotrophs in nitrogen supply to Sphagnum peat mosses is not well explored. Here, we investigated the role of both oxygen and methane on nitrogen fixation in subarctic Sphagnum peat mosses. Five species of Sphagnum mosses were sampled from two mesotrophic and three oligotrophic sites within the Lakkasuo peatland in Orivesi, central Finland. Mo…
Influence of the Fabrication Accuracy of Hot-Embossed PCL Scaffolds on Cell Growths
2020
Polycaprolactone (PCL) is a biocompatible and biodegradable polymer widely used for the realization of 3D scaffold for tissue engineering applications. The hot embossing technique (HE) allows the obtainment of PCL scaffolds with a regular array of micro pillars on their surface. The main drawback affecting this kind of micro fabrication process is that such structural superficial details can be damaged when detaching the replica from the mold. Therefore, the present study has focused on the optimization of the HE processes through the development of an analytical model for the prediction of the demolding force as a function of temperature. This model allowed calculating the minimum demoldin…