Search results for "palm"

showing 10 items of 338 documents

Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells.

2016

The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy-one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (A…

0301 basic medicineMalePhysiologyDopamineMice ObeseGene Expressionlcsh:MedicineBiochemistryAcyl-CoA DehydrogenaseMice0302 clinical medicineCatecholaminesEndocrinologyMedicine and Health SciencesAminesEnzyme Chemistrylcsh:ScienceBeta oxidationMice KnockoutMice Inbred C3HMultidisciplinaryOrganic CompoundsDopaminergicFatty AcidsNeurochemistryDiabetic retinopathyNeurotransmittersCircadian RhythmChemistryCircadian Oscillatorsmedicine.anatomical_structurePhysical SciencesFemaleAnatomyOxidation-Reductionmedicine.drugResearch Articlemedicine.medical_specialtyBiogenic AminesEndocrine DisordersOcular AnatomyBiologyRetinaEnzyme Regulation03 medical and health sciencesOcular SystemInternal medicinemedicineGeneticsDiabetes MellitusAnimalsPhotoreceptor CellsGene RegulationCircadian rhythmCarnitineACADMRetinaDiabetic RetinopathyCarnitine O-PalmitoyltransferaseReceptor Melatonin MT1Receptors Dopamine D4Organic Chemistrylcsh:RChemical CompoundsBiology and Life Sciencesmedicine.diseaseHormonesMice Inbred C57BLMetabolic pathwayDisease Models Animal030104 developmental biologyEndocrinologyMetabolismMicroscopy FluorescenceMetabolic DisordersEnzymologylcsh:Qsense organsEnergy MetabolismPhysiological ProcessesChronobiology030217 neurology & neurosurgeryNeurosciencePLoS ONE
researchProduct

Mitochondrial Fatty Acid β-Oxidation Inhibition Promotes Glucose Utilization and Protein Deposition through Energy Homeostasis Remodeling in Fish.

2020

BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid β-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. M…

0301 basic medicineMaleProtein metabolismMedicine (miscellaneous)MitochondrionEnergy homeostasis03 medical and health scienceschemistry.chemical_compoundNile tilapia0302 clinical medicineAdjuvants ImmunologicmedicineAnimalsHomeostasisInsulinCarnitineProtein kinase ACells CulturedZebrafishNutrition and DieteticsbiologyCarnitine O-PalmitoyltransferaseChemistryFatty AcidsProtein turnoverProteinsMetabolismCichlidsDNACytochromes bbiology.organism_classificationMitochondria030104 developmental biologyGlucoseBiochemistryMutationHepatocytesNutrient Physiology Metabolism and Nutrient-Nutrient InteractionsEnergy MetabolismOxidation-Reduction030217 neurology & neurosurgerymedicine.drugMethylhydrazinesThe Journal of nutrition
researchProduct

2019

Beside diverse therapeutic properties of palmitoylethanolamide (PEA) including: neuroprotection, inflammation and pain alleviation, prophylactic effects have also been reported in animal models of infections, inflammation, and neurological diseases. The availability of PEA as (ultra)micronized nutraceutical formulations with reportedly no side effects, renders it accordingly an appealing candidate in human preventive care, such as in population at high risk of disease development or for healthy aging. PEA’s mode of action is multi-facetted. Consensus exists that PEA’s effects are primarily modulated by the peroxisome proliferator-activated receptor alpha (PPARα) and that PEA-activated PPARα…

0301 basic medicinePalmitoylethanolamideeducation.field_of_studyGeneral NeurosciencePopulationfood and beveragesLipid metabolismLipid signalingPharmacologyLipidomeBiologyNeuroprotection03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinechemistryLipidomicsMode of actioneducation030217 neurology & neurosurgeryFrontiers in Neuroscience
researchProduct

Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers

2018

The capability of coarse-grained models based on the MARTINI mapping to reproduce the gel-liquid phase transition in saturated and unsaturated model lipids was investigated. We found that the model is able to reproduce a lower critical temperature for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with respect to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Nonetheless, the appearance of a gel phase for DOPC is strictly dependent on the intramolecular parameters chosen to model its molecular structure. In particular, we show that the bending angle at the coarse-grained bead corresponding to the unsaturated carbon-carbon bond acts as an order parameter determining the temperature of …

0301 basic medicinePhase transitionMolecular dynamic12-DipalmitoylphosphatidylcholineLipid BilayersMolecular ConformationBiophysicsBendingMolecular Dynamics SimulationMolecular dynamics01 natural sciencesBiochemistry03 medical and health sciencesMolecular dynamicsPhase (matter)BiomembranesBiomembrane0103 physical sciencesMoleculeLipid bilayerMolecular BiologyMulti-scalePhase transitionMARTINI010304 chemical physicsChemistryTransition temperatureTemperatureCell BiologyCrystallography030104 developmental biologyChemical physicsIntramolecular forcePhosphatidylcholinesBiomembranes; MARTINI; Molecular dynamics; Multi-scale; Phase transition; Biophysics; Biochemistry; Molecular Biology; Cell Biology
researchProduct

Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market

2018

Different specialty extra virgin oils, produced by cold-pressing fruits/nuts (olive, pequi, palm, avocado, coconut, macadamia and Brazil nut) and seeds (grapeseed and canola), and retailed in the Brazilian region of Minas Gerais, were chemically characterized. Specifically, for each type of oil, the fatty acid composition was elucidated by GC-FID, the contents of selected polyphenols and squalene were determined respectively by UHPLC-MS and UHPLC-PDA, whereas minerals were explored by means of ICP-MS. Olive oil was confirmed to have the highest MUFA content due to a valuable level of oleic acid, while oils from grapeseed, Brazil nut and canola were marked by nutritionally important PUFA lev…

0301 basic medicineSettore CHIM/10 - Chimica Degli AlimentiFood HandlingPalm Oilsqualenecold-pressingFatty Acids MonounsaturatedSqualenechemistry.chemical_compoundNutsVitisFood scienceCanolaChromatography High Pressure LiquidFlame Ionization2. Zero hungerCoconut oilmineralsSeedsCoconut OilFruit/nut oils Seed oils Cold-pressing Chemical characterization Fatty acids Polyphenols Squalene Minerals.fruit/nut oilsBrazilseed oilsSpectrometry Mass Electrospray IonizationChromatography Gasfood.ingredientfatty acids03 medical and health sciencesfoodPlant OilsOlive OilFruit/nut oils Seed oils Cold-pressing Chemical characterization Fatty acids Polyphenols Squalene Mineralspolyphenols030109 nutrition & dieteticschemical characterizationPerseafruit/nut oils; seed oils; cold-pressing; chemical characterization; fatty acids; polyphenols; squalene; mineralsLauric acidfood.foodTyrosolOleic acidchemistryMacadamiaBertholletiaHydroxytyrosolRapeseed OilFood AnalysisFood ScienceBrazil nut
researchProduct

Exploring Strategies for Labeling Viruses with Gold Nanoclusters through Non-equilibrium Molecular Dynamics Simulations.

2017

Biocompatible gold nanoclusters can be utilized as contrast agents in virus imaging. The labeling of viruses can be achieved noncovalently but site-specifically by linking the cluster to the hydrophobic pocket of a virus via a lipid-like pocket factor. We have estimated the binding affinities of three different pocket factors of echovirus 1 (EV1) in molecular dynamics simulations combined with non-equilibrium free-energy calculations. We have also studied the effects on binding affinities with a pocket factor linked to the Au102pMBA44 nanocluster in different protonation states. Although the absolute binding affinities are over-estimated for all the systems, the trend is in agreement with r…

0301 basic medicineStereochemistryBiomedical EngineeringPalmitic AcidPharmaceutical ScienceMetal NanoparticlesBioengineeringProtonationMolecular Dynamics SimulationLigandsAntiviral AgentsNanoclusters03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundCapsidCluster (physics)Moleculeta116OxazolesBinding affinitiesEnterovirusPharmacologyOxadiazolesBinding Sitesta114labeling virusesChemistryOrganic ChemistryBiocompatible materialCrystallography030104 developmental biologyThermodynamicsnon-equilibrium molecular dynamicsGoldgold nanoclustersHydrophobic and Hydrophilic InteractionsDerivative (chemistry)BiotechnologyBioconjugate chemistry
researchProduct

Fatty Acid Composition of Gluten-Free Food (Bakery Products) for Celiac People

2018

The aim of this study (first analytical approach) was to obtain data concerning the fatty acid composition of gluten-free foods (bakery products) for celiac people. The study included 35 different products (snacks, biscuits, bakery products, pasta, flours, etc.) from several manufacturers. After extraction and esterification, the fatty acid composition was determined by Gaschromatography (GC&ndash

0301 basic medicineanalytical_chemistryHealth (social science)celiacPlant ScienceRaw materiallcsh:Chemical technologyHealth Professions (miscellaneous)Microbiologyfatty acidsArticle03 medical and health sciencesPalm kernellcsh:TP1-1185GC–MSFood sciencechemistry.chemical_classification030109 nutrition & dieteticsbusiness.industryChemistryfood and beveragesFood safetyGluten-free foods030104 developmental biologyGluten freeFatty acid compositionGas chromatography–mass spectrometrybusinessFood SciencePolyunsaturated fatty acidOlive oilgluten-free foods
researchProduct

Functional differences between l- and d-carnitine in metabolic regulation evaluated using a low-carnitine Nile tilapia model.

2019

Abstractl-Carnitine is essential for mitochondrialβ-oxidation and has been used as a lipid-lowering feed additive in humans and farmed animals.d-Carnitine is an optical isomer ofl-carnitine anddl-carnitine has been widely used in animal feeds. However, the functional differences betweenl- andd-carnitine are difficult to study because of the endogenousl-carnitine background. In the present study, we developed a low-carnitine Nile tilapia model by treating fish with a carnitine synthesis inhibitor, and used this model to investigate the functional differences betweenl- andd-carnitine in nutrient metabolism in fish.l- ord-carnitine (0·4 g/kg diet) was fed to the low-carnitine tilapia for 6 wee…

0301 basic medicinefood.ingredientProtein metabolismMedicine (miscellaneous)Apoptosis03 medical and health scienceschemistry.chemical_compoundNile tilapiaCarnitine palmitoyltransferase 1foodCarnitinemedicineAnimalsMetabolomicsCarnitineRNA MessengerNutrition and DieteticsbiologyProteinsTilapiaStereoisomerism04 agricultural and veterinary sciencesbiology.organism_classificationAnimal FeedCitric acid cycleMetabolic pathwayOxidative Stress030104 developmental biologyGlucosechemistryLipotoxicityBiochemistryLiverModels Animal040102 fisheries0401 agriculture forestry and fisheriesOxidation-Reductionmedicine.drugTilapiaThe British journal of nutrition
researchProduct

Protective effects of bezafibrate against elaidic acid-induced accumulation of lipid droplets in monocytic cells

2016

Some factors related to diet, such as trans fatty acids (TFA), are known to be involved in the progression of atherosclerosis in humans. Thus, the aim of our study was (i) to evaluate the effects of three dietary free fatty acids (FFA) (elaidic (EA), oleic (OA) and palmitic acid (PA)) on U937 human monocytes, and (ii) to study the eventual benefits of bezafibrate (BZF), a pan-agonist for PPAR isoforms (α, γ and δ) in U937 cells treated with FFA. Morphologic and functional changes were investigated by microscopic and flow cytometric methods. Cellular lipid content, lipid droplets and FA composition were identified and studied. All analyses were also realized in association with or without BZ…

0301 basic medicinemedicine.medical_specialtyCD36Coronary DiseaseOleic Acids030204 cardiovascular system & hematologyMonocytesGeneral Biochemistry Genetics and Molecular BiologyPalmitic acid03 medical and health scienceschemistry.chemical_compound0302 clinical medicineInternal medicineLipid dropletmedicineHumansBezafibrateU937 cellbiologySuperoxideLipid DropletsU937 CellsGeneral MedicineElaidic acidPlaque AtheroscleroticOleic acid030104 developmental biologyEndocrinologychemistryBiochemistryCytoprotectionCase-Control Studiesbiology.proteinBezafibrateFoam Cellsmedicine.drugCurrent Research in Translational Medicine
researchProduct

Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production

2016

International audience; The worldwide prevalence of metabolic diseases is increasing, and there are global recommendations to limit consumption of certain nutrients, especially saturated lipids. Insulin resistance, a common trait occurring in obesity and type 2 diabetes, is associated with intestinal lipoprotein overproduction. However, the mechanisms by which the intestine develops insulin resistance in response to lipid overload remain unknown. Here, we show that insulin inhibits triglyceride secretion and intestinal microsomal triglyceride transfer protein expression in vivo in healthy mice force-fed monounsaturated fatty acid-rich olive oil but not in mice force-fed saturated fatty acid…

0301 basic medicinemedicine.medical_specialtyCeramidemedicine.medical_treatmentPalmitic Acid[SDV.BC]Life Sciences [q-bio]/Cellular BiologyPalm OilCeramidesBiochemistryPalmitic acidMice03 medical and health scienceschemistry.chemical_compoundInsulin resistance[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyInternal medicinemedicineAnimalsHumansInsulinPlant OilsIntestinal MucosaPhosphorylationMolecular BiologyComputingMilieux_MISCELLANEOUS2. Zero hungerbiologyTriglycerideInsulinCell BiologyLipid signalingmedicine.diseaseLipids3. Good healthInsulin receptorEnterocytes030104 developmental biologyEndocrinologychemistrySaturated fatty acidbiology.proteinCaco-2 CellsProto-Oncogene Proteins c-akt[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologySignal TransductionJournal of Biological Chemistry
researchProduct