6533b858fe1ef96bd12b6d79
RESEARCH PRODUCT
Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers
Jürgen GaussMichele CascellaGiuseppe MilanoGregor DiezemannStefan Jaschoneksubject
0301 basic medicinePhase transitionMolecular dynamic12-DipalmitoylphosphatidylcholineLipid BilayersMolecular ConformationBiophysicsBendingMolecular Dynamics SimulationMolecular dynamics01 natural sciencesBiochemistry03 medical and health sciencesMolecular dynamicsPhase (matter)BiomembranesBiomembrane0103 physical sciencesMoleculeLipid bilayerMolecular BiologyMulti-scalePhase transitionMARTINI010304 chemical physicsChemistryTransition temperatureTemperatureCell BiologyCrystallography030104 developmental biologyChemical physicsIntramolecular forcePhosphatidylcholinesBiomembranes; MARTINI; Molecular dynamics; Multi-scale; Phase transition; Biophysics; Biochemistry; Molecular Biology; Cell Biologydescription
The capability of coarse-grained models based on the MARTINI mapping to reproduce the gel-liquid phase transition in saturated and unsaturated model lipids was investigated. We found that the model is able to reproduce a lower critical temperature for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with respect to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Nonetheless, the appearance of a gel phase for DOPC is strictly dependent on the intramolecular parameters chosen to model its molecular structure. In particular, we show that the bending angle at the coarse-grained bead corresponding to the unsaturated carbon-carbon bond acts as an order parameter determining the temperature of the phase transition. Structural analysis of the molecular dynamics simulations runs evidences that in the gel phase, the packing of the lipophilic tails of DOPC assume a different conformation than in the liquid phase. In the latter phase, the DOPC geometry resembles that of the relaxed free molecule. DPPC:DOPC mixtures show a single phase transition temperature, indicating that the observation of a phase separation between the two lipids requires the simulation of systems with sizes much larger than the ones used here.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |