0000000000299612

AUTHOR

Stefan Jaschonek

Temperature dependent mechanical unfolding of calixarene nanocapsules studied by molecular dynamics simulations.

Using atomistic molecular dynamics simulations, we study the temperature dependence of the mechanical unfolding of a model supramolecular complex, a dimer of interlocked calixarene capsules. This system shows reversible transitions between two conformations that are stabilized by different networks of hydrogen bonds. We study the forced dissociation and formation of these networks as a function of temperature and find a strong impact of the nonequilibrium conditions imposed by pulling the system mechanically. The kinetics of the transition between the two conformations is ideally suited to investigate the range of validity of the stochastic models employed in the analysis of force dependent…

research product

Mechanical unfolding pathway of a model β-peptide foldamer.

Foldamers constructed from oligomers of β-peptides form stable secondary helix structures already for small chain lengths, which makes them ideal candidates for the investigation of the (un)folding of polypeptides. Here, the results of molecular simulations of the mechanical unfolding of a β-heptapeptide in methanol solvent revealing the detailed unfolding pathway are reported. The unfolding process is shown to proceed via a stable intermediate even for such a small system. This result is arrived at performing non-equilibrium force ramp simulations employing different pulling velocities and also using standard calculations of the potential of mean force, i.e., the free energy as a function …

research product

Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness.

We present a detailed study of the parameter dependence of force probe molecular dynamics (FPMD) simulations. Using a well studied calix[4]arene catenane dimer as a model system, we systematically vary the pulling velocity and the stiffness of the applied external potential. This allows us to investigate how the results of pulling simulations operating in the constant velocity mode (force-ramp mode) depend on the details of the simulation setup. The system studied has the further advantage of showing reversible rebinding meaning that we can monitor the opening and the rebinding transition. Many models designed to extract kinetic information from rupture force distributions work in the limit…

research product

Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers

The capability of coarse-grained models based on the MARTINI mapping to reproduce the gel-liquid phase transition in saturated and unsaturated model lipids was investigated. We found that the model is able to reproduce a lower critical temperature for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with respect to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Nonetheless, the appearance of a gel phase for DOPC is strictly dependent on the intramolecular parameters chosen to model its molecular structure. In particular, we show that the bending angle at the coarse-grained bead corresponding to the unsaturated carbon-carbon bond acts as an order parameter determining the temperature of …

research product

Mechanical and Structural Tuning of Reversible Hydrogen Bonding in Interlocked Calixarene Nanocapsules

We present force probe molecular dynamics simulations of dimers of interlocked calixarene nanocapsules and study the impact of structural details and solvent properties on the mechanical unfolding pathways. The system consists of two calixarene "cups" that form a catenane structure via interlocked aliphatic loops of tunable length. The dimer shows reversible rebinding, and the kinetics of the system can be understood in terms of a two-state model for shorter loops (≤14 CH2 units) and a three-state model for longer loops (≥15 CH2 units). The various conformational states of the dimer are stabilized by networks of hydrogen bonds, the mechanical susceptibility of which can be altered by changi…

research product