0000000000115904

AUTHOR

Giuseppe Milano

On the calculation of potential of mean force between atomistic nanoparticles

We study the potential of mean force (PMF) between atomistic silica and gold nanoparticles in the vacuum by using molecular dynamics simulations. Such an investigation is devised in order to fully characterize the effective interactions between atomistic nanoparticles, a crucial step to describe the PMF in high-density coarse-grained polymer nanocomposites. In our study, we first investigate the behavior of silica nanoparticles, considering cases corresponding to different particle sizes and assessing results against an analytic theory developed by Hamaker for a system of Lennard-Jones interacting particles [H. C. Hamaker, Physica A, 1937, 4, 1058]. Once validated the procedure, we calculat…

research product

Hybrid Particle-Field Molecular Dynamics Simulations of Charged Amphiphiles in an Aqueous Environment.

We develop and test specific coarse-grained models for charged amphiphilic systems such as palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayer and sodium dodecyl sulfate (SDS) surfactant in an aqueous environment, to verify the ability of the hybrid particle-field method to provide a realistic description of polyelectrolytes. According to the hybrid approach, the intramolecular interactions are treated by a standard molecular Hamiltonian, and the nonelectrostatic intermolecular forces are described by density fields. Electrostatics is introduced as an additional external field obtained by a modified particle-mesh Ewald procedure, as recently proposed [Zhu et al. Phys. Chem. Chem. Phys.…

research product

Supramolecular Packing Drives Morphological Transitions of Charged Surfactant Micelles

Abstract The shape and size of self‐assembled structures upon local organization of their molecular building blocks are hard to predict in the presence of long‐range interactions. Combining small‐angle X‐ray/neutron scattering data, theoretical modelling, and computer simulations, sodium dodecyl sulfate (SDS), over a broad range of concentrations and ionic strengths, was investigated. Computer simulations indicate that micellar shape changes are associated with different binding of the counterions. By employing a toy model based on point charges on a surface, and comparing it to experiments and simulations, it is demonstrated that the observed morphological changes are caused by symmetry br…

research product

Molecular structure and multi-body potential of mean force in silica-polystyrene nanocomposites

We perform a systematic application of the hybrid particle-field molecular dynamics technique [Milano et al, J. Chem. Phys. 2009, 130, 214106] to study interfacial properties and potential of mean force (PMF) for separating nanoparticles (NPs) in a melt. Specifically, we consider Silica NPs bare or grafted with Polystyrene chains, aiming to shed light on the interactions among free and grafted chains affecting the dispersion of NPs in the nanocomposite. The proposed hybrid models show good performances in catching the local structure of the chains, and in particular their density profiles, documenting the existence of the "wet-brush-to-dry-brush" transition. By using these models, the PMF b…

research product

Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers

The capability of coarse-grained models based on the MARTINI mapping to reproduce the gel-liquid phase transition in saturated and unsaturated model lipids was investigated. We found that the model is able to reproduce a lower critical temperature for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with respect to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Nonetheless, the appearance of a gel phase for DOPC is strictly dependent on the intramolecular parameters chosen to model its molecular structure. In particular, we show that the bending angle at the coarse-grained bead corresponding to the unsaturated carbon-carbon bond acts as an order parameter determining the temperature of …

research product