Search results for "partially ordered set"
showing 10 items of 23 documents
Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations
2012
In this paper, we establish certain fixed point theorems in metric spaces with a partial ordering. Presented theorems extend and generalize several existing results in the literature. As application, we use the fixed point theorems obtained in this paper to study existence and uniqueness of solutions for fourth-order two-point boundary value problems for elastic beam equations.
Spaces of typen on partially ordered sets
1989
This paper contains a generalized approach to incidence geometry on partially ordered sets. A difference to the usual geometrical concepts is that points may have different size. Our main result states that a large class of spaces allows lattice theoretic characterizations. Especially, a generalized version of the Veblen-Young axiom of projective geometry has a lattice theoretic equivalent, called then-generation property (which is a generalization of the ‘Verbindungssatz’). Modularity and distributivity of a lattice of subspaces are reflected in the underlying space. Finally we give specializations and examples.
Completion of partially ordered sets
2007
The complex of words and Nakaoka stability
2005
We give a new simple proof of the exactness of the complex of injective words and use it to prove Nakaoka's homology stability for symmetric groups. The methods are generalized to show acyclicity in low degrees for the complex of words in "general position". Hm(§ni1;Z) = Hm(§n;Z) for n=2 > m where §n denotes the permutation group of n elements. An elementary proof of this fact has not been available in the literature. In the first section the complex C⁄(m) of abelian groups is studied which in de- gree n is freely generated by injective words of length n. The alphabet consists of m letters. The complex C⁄(m) has the only non vanishing homology in degree m (Theorem 1). This is a result of F.…
Coupled fixed point, F-invariant set and fixed point of N-order
2010
In this paper, we establish some new coupled fixed point theorems in complete metric spaces, using a new concept of $F$-invariant set. We introduce the notion of fixed point of $N$-order as natural extension of that of coupled fixed point. As applications, we discuss and adapt the presented results to the setting of partially ordered cone metric spaces. The presented results extend and complement some known existence results from the literature.
Ordering and Convex Polyominoes
2005
We introduce a partial order on pictures (matrices), denoted by ≼ that extends to two dimensions the subword ordering on words. We investigate properties of special families of discrete sets (corresponding to {0,1}-matrices) with respect to this partial order. In particular we consider the families of polyominoes and convex polyominoes and the family, recently introduced by the authors, of L-convex polyominoes. In the first part of the paper we study the closure properties of such families with respect to the order. In particular we obtain a new characterization of L-convex polyominoes: a discrete set P is a L-convex polyomino if and only if all the elements Q≼P are polyominoes. In the seco…
Meir-Keeler Type Contractions for Tripled Fixed Points
2012
Abstract In 2011, Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces. In our paper, we give some new tripled fixed point theorems by using a generalization of Meir-Keeler contraction.
The Rotation χ-Lattice of Ternary Trees
2001
This paper generalizes to k-ary trees the well-known rotation transformation on binary trees. For brevity, only the ternary case is developped. The rotation on ternary trees is characterized using some codings of trees. Although the corresponding poset is not a lattice, we show that it is a χ-lattice in the sense of Leutola–Nieminen. Efficient algorithms are exhibited to compute meets and joins choosen in a particular way.
Set-valued mappings in partially ordered fuzzy metric spaces
2014
Abstract In this paper, we provide coincidence point and fixed point theorems satisfying an implicit relation, which extends and generalizes the result of Gregori and Sapena, for set-valued mappings in complete partially ordered fuzzy metric spaces. Also we prove a fixed point theorem for set-valued mappings on complete partially ordered fuzzy metric spaces which generalizes results of Mihet and Tirado. MSC:54E40, 54E35, 54H25.
The measurement of rank mobility
2009
Abstract In this paper we investigate the problem of measuring social mobility when the social status of individuals is given by their rank. In order to sensibly represent the rank mobility of subgroups within a given society, we address the problem in terms of partial permutation matrices which include standard (“global”) matrices as a special case. We first provide a characterization of a partial ordering on partial matrices which, in the standard case of global matrices, coincides with the well-known “concordance” ordering. We then provide a characterization of an index of rank mobility based on partial matrices and show that, in the standard case of comparing global matrices, it is equi…