Search results for "path"

showing 10 items of 15327 documents

Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors

2019

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus.…

0106 biological sciences0301 basic medicineretrograde signalingChloroplastsArabidopsisPlant BiologyMitochondrion01 natural sciencesElectron Transport Complex IIIGene Expression Regulation PlantArabidopsisOXIDATIVE STRESS-RESPONSETranscriptional regulationCYCLIC ELECTRON FLOWBiology (General)Nuclear proteinANAC transcription factors1183 Plant biology microbiology virologyreactive oxygen speciesbiologyChemistryRETROGRADE REGULATIONGeneral NeuroscienceQRNuclear Proteinsfood and beveragesGeneral MedicinePlants Genetically Modified:Science::Biological sciences [DRNTU]Cell biologyMitochondriaChloroplastviherhiukkasetMedicineSignal transductionmitochondrial functionsResearch ArticleSignal TransductionQH301-705.5SciencemitokondriotGenetics and Molecular BiologyGeneral Biochemistry Genetics and Molecular BiologyPROTEIN COMPLEXESSIGNALING PATHWAYS03 medical and health scienceschloroplastStress PhysiologicalALTERNATIVE OXIDASESkasvitENZYME-ACTIVITIESredox signalingTranscription factorarabidopsis RCD1General Immunology and MicrobiologybiokemiaArabidopsis Proteinsta1182Biology and Life Sciencesbiology.organism_classification030104 developmental biologyCELL-DEATHPLANT-MITOCHONDRIAA. thalianaGeneral BiochemistryRetrograde signalingGENES-ENCODING MITOCHONDRIALproteiinit010606 plant biology & botanyTranscription Factors
researchProduct

The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants : The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism

2018

Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate – serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked …

0106 biological sciences0301 basic medicineycolysisReviewPlant Sciencelcsh:Plant culture01 natural sciencesSerine03 medical and health scienceslcsh:SB1-1110GlycolysisPlastidplastidNitrogen cycleglycerate serine pathwayγ-aminobutyric acid (GABA)gamma-aminobutyric acid (GABA)ChemistryBotanyCorrectionMetabolismBotanikglycolysisphosphorylated serine pathway030104 developmental biologyBiochemistryGlycinePhotorespirationPhosphorylation010606 plant biology & botany
researchProduct

Ants medicate to fight disease

2015

Parasites are ubiquitous, and the ability to defend against these is of paramount importance. One way to fight diseases is self-medication, which occurs when an organism consumes biologically active compounds to clear, inhibit, or alleviate disease symptoms. Here, we show for the first time that ants selectively consume harmful substances (reactive oxygen species, ROS) upon exposure to a fungal pathogen, yet avoid these in the absence of infection. This increased intake of ROS, while harmful to healthy ants, leads to higher survival of exposed ants. The fact that ingestion of this substance carries a fitness cost in the absence of pathogens rules out compensatory diet choice as the mechanis…

0106 biological sciences0303 health sciencesEcologyGenetic FitnessDiseaseFungal pathogenBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesImmunityImmunologyGeneticsIngestionGeneral Agricultural and Biological SciencesEcology Evolution Behavior and SystematicsOrganism030304 developmental biologyFitness costEvolution
researchProduct

Thermal Tolerance is linked with Virulence in a Fish Pathogen

2017

ABSTRACTAlthough increase in temperatures may boost the number of pathogens, a complex process involving the interaction of a susceptible host, a virulent strain, and environmental factors would influence disease virulence in unpredictable ways. Here we explored if the virulence of an environmentally growing opportunistic fish pathogen,Flavobacterium columnare, would be malleable to evolutionary changes via correlated selection on thermal tolerance. Virulence among the strains increased over years, but tolerance to higher temperatures was associated with reduced virulence. Our results suggest that observed increase in frequency of columnaris epidemics over the last decade is most likely ass…

0106 biological sciences0303 health sciencesObligateHost (biology)VirulenceGrowing seasonBiologybiology.organism_classificationmedicine.disease010603 evolutionary biology01 natural sciencesColumnarisMicrobiology03 medical and health sciences13. Climate actionSusceptible individualFlavobacterium columnaremedicinePathogen030304 developmental biology
researchProduct

Mechanisms of Defence to Pathogens : Biochemistry and Physiology

2014

SPE IPM; International audience; Plant defences comprise both pre-existing barriers as well as defences induced upon perception of pathogen-associated molecular patterns (PAMPs) or microbe-associated molecular patterns (MAMPs) or molecules produced from damage as a result of infection (damage-associated molecular patterns (DAMPs)). This chapter focuses on the induced mechanisms of defence. The inducibility of phytoalexin biosynthesis has probably been favoured in the course of evolution by biological constraints such as metabolic costs and functional side-effects associated with chemical defence. Historically, the term ‘hypersensitive’ refers to the rapid and localized cell death induced in…

0106 biological sciences0303 health sciences[SDV]Life Sciences [q-bio]plant defencesfood and beveragespathogenspathogenesis-related (PR) proteinsBiology01 natural sciencesPhytoalexin biosynthesisMicrobiologymicrobe-associated molecular patterns (MAMPs)03 medical and health scienceshypersensitive response (HR)Biochemistrypathogen-associated molecular patterns (PAMPs)[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biologydamage-associated molecular patterns (DAMPs)phytoalexin biosynthesis030304 developmental biology010606 plant biology & botany
researchProduct

Absorption, translocation and metabolism of pyridate in a tolerant crop (Zea mays) and two susceptible weeds (Polygonum lapathifolium L. and Chenopod…

1988

Summary Absorption, translocation and metabolism of 14C-pyridate were compared in tolerant maize. moderately susceptible Polygonum lapathifolium and susceptible Chenopodium album. Foliar absorption was limited in all species, but comparatively higher penetration levels were observed in younger leaves of dicotyledonous species. The absorbed radioactivity was not very mobile and translocation appeared mainly sym-plastic. Herbicide selectivity could not be explained on the basis of absorption and transport. Chenopodium and P. lapathifolium degraded pyridate and formed unstable water-soluble conjugates that easily released a phytotoxic metabolite. By contrast, more stable unidentified water-sol…

0106 biological sciences2. Zero hungerPolygonumbiologyChenopodiumChromosomal translocation04 agricultural and veterinary sciencesPlant ScienceMetabolism15. Life on landPOLYGONUM LAPATHIFOLIUM Lbiology.organism_classification01 natural sciencesZea maysBotany040103 agronomy & agriculture0401 agriculture forestry and fisheries[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyAgronomy and Crop ScienceClay soilEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUS010606 plant biology & botany
researchProduct

Condition-dependent ecdysis and immunocompetence in the amphipod crustacean, Gammarus pulex.

2010

The exoskeleton of arthropods forms an efficient protection against pathogens, but this first line of defence is periodically weakened during ecdysis, increasing the opportunity for surrounding pathogens to invade the body cavity. Since the richness of pathogens in the environment can be spatially and temporally variable, arthropods may have a fitness advantage in moulting in a place and time of low infection risk. Consistent with this hypothesis, we found that the amphipod crustacean, Gammarus pulex , exhibits temporal adjustment of the moult cycle in response to elevated risks of infection. Interestingly, this phenomenon is variable between two populations and independent of levels of im…

0106 biological sciencesAmphipodacondition-dependent ecdysisAdaptation BiologicalMolting[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunologyModels Biological010603 evolutionary biology01 natural sciences03 medical and health sciences[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosismedicineAnimalsAmphipodaBody cavityinnate immunity030304 developmental biology[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEvolutionary Biology0303 health sciencesInnate immune systembiologyEcologybiology.organism_classificationinvertebratesAgricultural and Biological Sciences (miscellaneous)CrustaceanImmunity InnateGammarus pulexmedicine.anatomical_structure[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyEcdysisHost-Pathogen InteractionsAdaptation[SDE.BE]Environmental Sciences/Biodiversity and EcologyGeneral Agricultural and Biological SciencesImmunocompetenceMoulting[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Responses of a native plant species from invaded and uninvaded areas to allelopathic effects of an invader

2019

Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co‐occurring with in‐ vaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co‐occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces …

0106 biological sciencesAnthriscus sylvestrisLupinus polyphyllusmedia_common.quotation_subjectLupinus polyphyllusIntroduced speciesBiology010603 evolutionary biology01 natural sciencesCompetition (biology)03 medical and health scienceslcsh:QH540-549.5Botanyvieraslajitlupiinitevolutionary responseEcology Evolution Behavior and SystematicsAllelopathyOriginal Research030304 developmental biologyNature and Landscape Conservationmedia_commonLocal adaptationsopeutuminen0303 health sciencesEcology15. Life on landNative plantnative plantbiology.organism_classificationinvasionalkuperäiset kasvilajitLocal extinctionlcsh:EcologyAnthriscus sylvestrissarjakukkaiskasvitlocal adaptation
researchProduct

Immunity and other defenses in pea aphids, Acyrthosiphon pisum

2010

Background Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously ch…

0106 biological sciencesAntimicrobial Peptide; Suppression Subtraction Hybridization; Hemocyte; Alarm Pheromone; Parasitoid WaspGenome InsectHemocyteGenes Insect01 natural sciencesGenomearthropodeAlarm PheromoneParasitoid WaspGenetics0303 health sciencesAphidbiologyAntimicrobial Peptidefood and beveragesGENOMIQUEINSECTEpuceronPEA APHIDSparasiteHost-Pathogen InteractionsSuppression Subtraction Hybridizationagent pathogèneréponse immunitaireACYRTHOSIPHON PISUMAntimicrobial peptidesPEA APHIDS;ACYRTHOSIPHON PISUM;INSECTE;GENOMIQUE010603 evolutionary biology03 medical and health sciencesImmune systemBuchneraImmunityStress PhysiologicalBotanyAnimalsLife ScienceSymbiosisGene030304 developmental biologyResearchgèneGene Expression ProfilingfungiImmunitybiochemical phenomena metabolism and nutritionbiology.organism_classificationAcyrthosiphon pisumGene expression profilingAphidsbacteriaResearch highlight[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisGenome Biology
researchProduct

Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance toHyaloperonospora arabidopsidis

2013

Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (N…

0106 biological sciencesArabidopsis thaliana[SDV]Life Sciences [q-bio]ArabidopsisOligosaccharidesPlant Science01 natural sciencesCALCIUM SIGNATURESchemistry.chemical_compoundGene Expression Regulation PlantSYSTEMIC ACQUIRED-RESISTANCEArabidopsisPlant defense against herbivoryArabidopsis thalianaPlant ImmunityGENE-EXPRESSIONCalcium signaling0303 health sciencesIMMUNE-RESPONSESTOBACCO CELLSfood and beveragesCYTOSOLIC CALCIUMElicitorOomycetesReceptors GlutamateBiochemistryHost-Pathogen Interactions[SDE]Environmental SciencesoligogalacturonidesSignal transductionSignal Transductionglutamate receptorHyaloperonospora arabidopsidisBiologyNitric Oxidecalcium signaling03 medical and health sciencesplant defenseGeneticsDNQX[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBOTRYTIS-CINEREA030304 developmental biologyHyaloperonospora arabidopsidisNITRIC-OXIDEArabidopsis ProteinsCell Biologybiology.organism_classificationSALICYLIC-ACIDchemistryPLASMA-MEMBRANEReactive Oxygen Species010606 plant biology & botanyThe Plant Journal
researchProduct