Search results for "pattern recognition"
showing 10 items of 2301 documents
Towards more relevance-oriented data mining research
2008
Data mining (DM) research has successfully developed advanced DM techniques and algorithms over the last few decades, and many organisations have great expectations to take more benefit of their data warehouses in decision making. Currently, the strong focus of most DM-researchers is still only on technology-oriented topics. Commonly the DM research has several stakeholders, the major of which can be divided into internal and external ones each having their own point of view, and which are at least partly conflicting. The most important internal groups of stakeholders are the DM research community and academics in other disciplines. The most important external stakeholder groups are manager…
Complexity reduction in efficient prototype-based classification
2006
Corrigendum to three papers that deal with “Anti”-Bayesian Pattern Recognition [Pattern Recognition]
2014
In the papers 1 (Thomas and Oommen, 2013), 2 (Oommen and Thomas, 2014) and 3 (Thomas and Oommen, 2013), and their associated conference versions cited in those papers, we had introduced a new method of so-called "Anti"-Bayesian Pattern Recognition (PR) which achieved the classification using only a few (sometimes as few as two) points distant from the mean. While the PR strategy, in and of itself, is accurate, the claim that it was based on the Order Statistics (OS) of the distributions of the features is not. The PR and classification results are rather founded on the symmetric quantiles and not on the symmetric OSs. This brief paper corrects the flawed claim presented in those papers. Hig…
Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation
2019
Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…
Digital liquid-scintillation counting and effective pulse-shape discrimination with artificial neural networks
2014
Abstract A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambigu…
Artificial Neural Networks and Linear Discriminant Analysis: A Valuable Combination in the Selection of New Antibacterial Compounds
2004
A set of topological descriptors has been used to discriminate between antibacterial and nonantibacterial drugs. Topological descriptors are simple integers calculated from the molecular structure represented in SMILES format. The methods used for antibacterial activity discrimination were linear discriminant analysis (LDA) and artificial neural networks of a multilayer perceptron (MLP) type. The following plot frequency distribution diagrams were used: a function of the number of drugs within a value interval of the discriminant function and the output value of the neural network versus these values. Pharmacological distribution diagrams (PDD) were used as a visualizing technique for the i…
A Study of Perceptron Mapping Capability to Design Speech Event Detectors
2006
Event detection is a fundamental yet critical component in automatic speech recognition (ASR) systems that attempt to extract knowledge-based features at the front-end level. In this context, it is common practice to design the detectors inside well-known frameworks based on artificial neural network (ANN) or support vector machine (SVM). In the case of ANN, speech scientists often design their detector architecture relying on conventional feed-forward multi-layer perceptron (MLP) with sigmoidal activation function. The aim of this paper is to introduce other ANN architectures inside the context of detection-based ASR. In particular, a bank of feed-forward MLPs using sinusoidal activation f…
A New Unsupervised Neural Network for Pattern Recognition with Spiking Neurons
2006
In this paper we propose a three-layered neural network for binary pattern recognition and memorization. Unlike the classic approach to pattern recognition, our net works organizing itself in an unsupervised way, to distinguish beetween different patterns or to recognize similar ones. If we present a binary input to the first layer, after some time steps we could read the output of the net in the third layer, as one and only one neuron activating with high firing rate; the middle layer will act as a generalization layer, i.e. similar pattern will have similar (or the same) representation in the middle layer. We used learning algorithms inspired from other works or from biological data to ac…
Towards reactive navigation and attention skills for 3D intelligent characters
2003
This paper presents a neural design which is able to provide the necessary reactive navigation and attention skills for 3D embodied agents (virtual humanoids or characters). Based on Grossberg's neural model of conditioning [6], as recently implemented by Chang and Gaudiando [7], and according to the Adaptative Resonance Theory (ART) and the neuroscientific concepts associated, the neural design introduced has been divided in two main phases. Firstly, an environmentcategorization phase, where an on-line pattern recognition and categorization of the current agent sensory input data is carried out by a self organizing neural network, which will finally provide the agent's short term memory la…
Automated microorganisms activity detection on the early growth stage using artificial neural networks
2019
The paper proposes an approach of a novel non-contact optical technique for early evaluation of microbial activity. Noncontact evaluation will exploit laser speckle contrast imaging technique in combination with artificial neural network (ANN) based image processing. Microbial activity evaluation process will comprise acquisition of time variable laser speckle patterns in given sample, ANN based image processing and visualization of obtained results. The proposed technology will measure microbial activity (like growth speed) and implement these results for counting live microbes. It is expected, that proposed technology will help to evaluate number of colony forming units (CFU) and return r…