Search results for "pattern recognition"

showing 10 items of 2301 documents

A new method for optimal synthesis of wavelet-based neural networks suitable for identification purposes

1999

Abstract This paper deals with a new method for optimal synthesis of Wavelet-Based Neural Networks (WBNN) suitable for identification purposes. The method uses a genetic algorithm (GA) combined with a steepest descent technique and least square techniques for both optimal selection of the structure of the WBNN and its training. The method is applied for designing a predictor for a chaotic temporal series

Artificial neural networkSeries (mathematics)Computer sciencebusiness.industryMathematicsofComputing_NUMERICALANALYSISChaoticPattern recognitionMachine learningcomputer.software_genreLeast squaresIdentification (information)WaveletGenetic algorithmArtificial intelligencebusinessGradient descentcomputerSelection (genetic algorithm)IFAC Proceedings Volumes
researchProduct

Combining Auto-Encoder with LSTM for WiFi-Based Fingerprint Positioning

2021

Although indoor positioning has long been investigated by various means, its accuracy remains concern. Several recent studies have applied machine learning algorithms to explore wireless fidelity (WiFi)-based positioning. In this paper, we propose a novel deep learning model which concatenates an auto-encoder with a long short term memory (LSTM) network for the purpose of WiFi fingerprint positioning. We first employ an auto-encoder to extract representative latent codes of fingerprints. Such an extraction is proven to be more reliable than simply using a deep neural network to extract representative features since a latent code can be reverted back to its original input. Then, a sequence o…

Artificial neural networkbusiness.industryComputer scienceDeep learningFeature extractionFingerprint (computing)WirelessPattern recognitionArtificial intelligenceFingerprint recognitionbusinessAutoencoderData modeling2021 International Conference on Computer Communications and Networks (ICCCN)
researchProduct

Semi-Supervised Support Vector Biophysical Parameter Estimation

2008

Two kernel-based methods for semi-supervised regression are presented. The methods rely on building a graph or hypergraph Laplacian with both the labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). The semi-supervised SVR methods are sucessfully tested in LAI estimation and ocean chlorophyll concentration prediction from remotely sensed images.

Artificial neural networkbusiness.industryComputer scienceEstimation theoryPattern recognitionRegression analysisSupport vector machineStatistics::Machine LearningKernel (linear algebra)Kernel methodVariable kernel density estimationPolynomial kernelRadial basis function kernelArtificial intelligencebusinessLaplace operatorIGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Connectionist models of face processing: A survey

1994

Abstract Connectionist models of face recognition, identification, and categorization have appeared recently in several disciplines, including psychology, computer science, and engineering. We present a review of these models with the goal of complementing a recent survey by Samal and Iyengar [Pattern Recognition25, 65–77 (1992)] of nonconnectionist approaches to the problem of the automatic face recognition. We concentrate on models that use linear autoassociative networks, nonlinear autoassociative (or compression) and/or heteroassociative backpropagation networks. One advantage of these models over some nonconnectionist approaches is that analyzable features emerge naturally from image-b…

Artificial neural networkbusiness.industryComputer scienceFeature selectionMachine learningcomputer.software_genreFacial recognition systemBackpropagationCategorizationConnectionismArtificial IntelligenceFace (geometry)Signal ProcessingPattern recognition (psychology)Computer Vision and Pattern RecognitionArtificial intelligencebusinesscomputerSoftwarePattern Recognition
researchProduct

Fast Fingerprints Classification Only Using the Directional Image

2007

The classification phase is an important step of an automatic fingerprint identification system, where the goal is to restrict only to a subset of the whole database the search time. The proposed system classifies fingerprint images in four classes using only directional image information. This approach, unlike the literature approaches, uses the acquired fingerprint image without enhancement phases application. The system extracts only directional image and uses three concurrent decisional modules to classify the fingerprint. The proposed system has a high classification speed and a very low computational cost. The experimental results show a classification rate of 87.27%.

Artificial neural networkbusiness.industryComputer scienceFingerprintBayesian networkPattern recognitionArtificial intelligencebusinessImage (mathematics)
researchProduct

Logo detection in images using HOG and SIFT

2017

In this paper we present a study of logo detection in images from a media agency. We compare two most widely used methods — HOG and SIFT on a challenging dataset of images arising from a printed press and news portals. Despite common opinion that SIFT method is superior, our results show that HOG method performs significantly better on our dataset. We augment the HOG method with image resizing and rotation to improve its performance even more. We found out that by using such approach it is possible to obtain good results with increased recall and reasonably decreased precision.

Artificial neural networkbusiness.industryComputer scienceHistogramFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformLogoPattern recognitionArtificial intelligencebusinessRotation (mathematics)Object detection2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)
researchProduct

Regularized RBF Networks for Hyperspectral Data Classification

2004

In this paper, we analyze several regularized types of Radial Basis Function (RBF) Networks for crop classification using hyperspectral images. We compare the regularized RBF neural network with Support Vector Machines (SVM) using the RBF kernel, and AdaBoost Regularized (ABR) algorithm using RBF bases, in terms of accuracy and robustness. Several scenarios of increasing input space dimensionality are tested for six images containing six crop classes. Also, regularization, sparseness, and knowledge extraction are paid attention.

Artificial neural networkbusiness.industryComputer scienceMathematicsofComputing_NUMERICALANALYSISComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHyperspectral imagingPattern recognitionSupport vector machineComputingMethodologies_PATTERNRECOGNITIONComputer Science::Computational Engineering Finance and ScienceRobustness (computer science)Computer Science::Computer Vision and Pattern RecognitionRadial basis function kernelRadial basis functionArtificial intelligenceAdaBoostbusinessCurse of dimensionality
researchProduct

Why Cortices? Neural Networks for Visual Information Processing

1989

Neural networks for the processing of sensory information show remarkable similarities between different species and across different sensory modalities. As an example, cortical organization found in the mamalian neopallium and in the optic tecta of most vertebrates appears to be equally appropriate as a substrate for visual, auditory, and somatosensory information processing. In this paper, we formulate three structural principles of the vertebrate visual cortex that allow to analyze structure and function of these neural networks on an intermediate level of complexity. Computational applications are taken from the field of early vision. The proposed principles are: (a) Average anatomy, i …

Artificial neural networkbusiness.industryComputer scienceOptical flowPattern recognitionSensory systemImage processingModels of neural computationVisual cortexmedicine.anatomical_structureReceptive fieldmedicineArtificial intelligenceMotion perceptionbusinessNeuroscience
researchProduct

Testing selected optimal descriptors with artificial neural networks

2013

Eleven properties have been modeled with the objective of checking the importance for model purposes of mixed descriptors made of empirical parameters, molecular connectivity indices and random numbers. The mixed descriptors with random indices have a descriptive character which is satisfactorily confirmed by the leave-one-out method of statistical analysis. The introduction of a partition of the set of compounds into training and evaluation sets decreases drastically the probability to find a mixed descriptor with random indices with good model quality. Two properties, the magnetic susceptibility and the elutropic values, insist on having optimal descriptors with random indices. The overal…

Artificial neural networkbusiness.industryGeneral Chemical EngineeringModel studyPattern recognitionGeneral ChemistryENCODECore electronPartition (number theory)Statistical analysisModel qualityArtificial intelligencebusinessMathematicsRSC Advances
researchProduct

An Encrypted Traffic Classification Framework Based on Convolutional Neural Networks and Stacked Autoencoders

2020

In recent years, deep learning-based encrypted traffic classification has proven to be effective; especially, using neural networks to extract features from raw traffic to classify encrypted traffic. However, most of the neural networks need a fixed-sized input, so that the raw traffic need to be trimmed. This will cause the loss of some information; for example, we do not know the number of packets in a session. To solve these problems, a framework, which implements both a convolutional neural network (CNN) and a stacked autoencoder (SAE), is proposed in this paper. This framework uses a CNN to extract high-level features from raw network traffic and uses an SAE to encode the 26 statistica…

Artificial neural networkbusiness.industryNetwork packetComputer scienceDeep learningFeature extraction020206 networking & telecommunicationsPattern recognition02 engineering and technologyEncryptionAutoencoderConvolutional neural networkTraffic classification0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusiness2020 IEEE 6th International Conference on Computer and Communications (ICCC)
researchProduct