Search results for "pattern recognition"
showing 10 items of 2301 documents
Abnormal Textures Identification Based on Digital Hilbert Optics Methods: Fundamental Transforms and Models
2017
The article presents the abnormal textures identification technology based on structural and statistical models of amplitude-phase images (APIm) – multidimensional data arrays (semantic models) and statistical correlation analysis methods using the generalized discrete Hilbert transforms (DHT) – 2D Hilbert (Foucault) isotropic (HTI), anisotropic (HTA) and total transforms – AP-analysis (APA) to calculate the APIm. The identified fragments of textures are obtained as examples of experimental observation of real mammograms contains areas of pathological tissues. The DHT based information technology as conceptual chart description is discussed and illustrated with DHO domain images. As additio…
Tracking Moving Objects With a Catadioptric Sensor Using Particle Filter
2011
International audience; Visual tracking in video sequences is a widely developed topic in computer vision applications. However, the emergence of panoramic vision using catadioptric sensors has created the need for new approaches in order to track an object in this type of images. Indeed the non-linear resolution and the geometric distortions due to the insertion of the mirror, make tracking in catadioptric images a very challenging task. This paper describes particle filter for tracking moving object over time using a catadioptric sensor. In this work different problems due to the specificities of the catadioptric systems such as geometry are considered. The obtained results demonstrate an…
An insight into the electrical energy demand of friction stir welding processes: the role of process parameters, material and machine tool architectu…
2018
The manufacturing sector accounts for a high share of global electrical energy consumption and CO 2 emissions, and therefore, the environmental impact of production processes is being more and more investigated. An analysis of power and energy consumption in friction stir welding processes can contribute to the characterization of the process from a new point of view and also provide useful information about the environmental impact of the process. An in-depth analysis of electrical energy demand of friction stir welding is here proposed. Different machine tool architectures, including an industrial dedicated machine, have been used to weld aluminum and steel sheets under different process …
MFNet: Multi-feature convolutional neural network for high-density crowd counting
2020
The crowd counting task involves the issue of security, so now more and more people are concerned about it. At present, the most difficult problem of population counting consists in: how to make the model distinguish human head features more finely in the densely populated area, such as head overlap and how to find a small-scale local head feature in an image with a wide range of population density. Facing these challenges, we propose a network for multiple feature convolutional neural network, which is called MFNet. It aims to get high-quality density maps in the high-density crowd scene, and at the same time to perform the task of the count and estimation of the crowd. In terms of crowd c…
New delay-dependent stability of Markovian jump neutral stochastic systems with general unknown transition rates
2015
This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates GUTRs. In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.
Dissipativity-Based Small-Gain Theorems for Stochastic Network Systems
2016
In this paper, some small-gain theorems are proposed for stochastic network systems which describe large-scale systems with interconnections, uncertainties and random disturbances. By the aid of conditional dissipativity and showing times of stochastic interval, small-gain conditions proposed for the deterministic case are extended to the stochastic case. When some design parameters are tunable in practice, we invaginate a simpler method to verify small-gain condition by selecting one subsystem as a monitor. Compared with the existing results, the existence-and-uniqueness of solution and ultimate uniform boundedness of input are removed from requirements of input-to-state stability and smal…
PolyACO+: a multi-level polygon-based ant colony optimisation classifier
2017
Ant Colony Optimisation for classification has mostly been limited to rule based approaches where artificial ants walk on datasets in order to extract rules from the trends in the data, and hybrid approaches which attempt to boost the performance of existing classifiers through guided feature reductions or parameter optimisations. A recent notable example that is distinct from the mainstream approaches is PolyACO, which is a proof of concept polygon-based classifier that resorts to ant colony optimisation as a technique to create multi-edged polygons as class separators. Despite possessing some promise, PolyACO has some significant limitations, most notably, the fact of supporting classific…
On the Influence of Affect in EEG-Based Subject Identification
2021
Biometric signals have been extensively used for user identification and authentication due to their inherent characteristics that are unique to each person. The variation exhibited between the brain signals (EEG) of different people makes such signals especially suitable for biometric user identification. However, the characteristics of these signals are also influenced by the user’s current condition, including his/her affective state. In this paper, we analyze the significance of the affect-related component of brain signals within the subject identification context. Consistent results are obtained across three different public datasets, suggesting that the dominant component of the sign…
ES1D: A Deep Network for EEG-Based Subject Identification
2017
Security systems are starting to meet new technologies and new machine learning techniques, and a variety of methods to identify individuals from physiological signals have been developed. In this paper, we present ESID, a deep learning approach to identify subjects from electroencephalogram (EEG) signals captured by using a low cost device. The system consists of a Convolutional Neural Network (CNN), which is fed with the power spectral density of different EEG recordings belonging to different individuals. The network is trained for a period of one million iterations, in order to learn features related to local patterns in the spectral domain of the original signal. The performance of the…
Group analysis of ongoing EEG data based on fast double-coupled nonnegative tensor decomposition
2019
Abstract Background Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities from ongoing EEG elicited by 512-s long modern tango music. New method Aiming to discover the commonly music-elicited brain activities among subjects, we provide a comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algorithm. The proposed algorithm with a generalized model is capable of simultaneo…