Search results for "periclase"

showing 6 items of 6 documents

Fe-periclase reactivity at Earth's lower mantle conditions: Ab-initio geochemical modelling

2017

Intrinsic and extrinsic stability of the (Mg, Fe) O solid mixture in the Fe-Mg-Si-O system at high P, T conditions relevant to the Earth's mantle is investigated by the combination of quantum mechanical calculations (Hartree-26 Fock/DFT hybrid scheme), cluster expansion techniques and statistical thermodynamics. Iron in the (Mg, Fe) O binary mixture is assumed to be either in the low spin (LS) or in the high spin (HS) state. Un-mixing at solid state is observed only for the LS condition in the 23-42 GPa pressure range, whereas HS does not give rise to un-mixing. LS (Mg, Fe) O un-mixings are shown to be able to incorporate iron by subsolidus reactions with a reservoir of a virtual bridgmanit…

Subsolidus reaction modellingMgO-FeO binary010504 meteorology & atmospheric sciencesSilicate perovskiteLower mantle geochemical heterogeneitiesAnalytical chemistryAb initioLower mantle geochemical heterogeneities MgO-FeO binary Mixing Gibbs energy Pyrolitic geochemical mode Subsolidus reaction modellingMineralogyengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)Geochemistry and PetrologyMixing Gibbs energy0105 earth and related environmental sciencesPyrolitic geochemical modeSettore GEO/06 - MineralogiaPyrolitic geochemical modelAmbientaleDiamondHartreePartition coefficientengineeringPericlaseMgO-FeO binaryPyrolitic geochemical modelLower mantle geochemical heterogeneitiesSubsolidus reaction modellingMixing Gibbs energyGeologyCluster expansion
researchProduct

Melting temperature prediction by thermoelastic instability: An ab initio modelling, for periclase (MgO)

2021

Abstract Melting temperature (TM) is a crucial physical property of solids and plays an important role for the characterization of materials, allowing us to understand their behavior at non-ambient conditions. The present investigation aims i) to provide a physically sound basis to the estimation of TM through a “critical temperature” (TC), which signals the onset of thermodynamic instability due to a change of the isothermal bulk modulus from positive to negative at a given PC-VC-TC point, such that (∂P/∂V)VC,TC = -(∂2F/∂V2) VC,TC = 0; ii) to discuss the case of periclase (MgO), for which accurate melting temperature observations as a function of pressure are available. Using first princip…

010302 applied physicsMaterials scienceGeneral Chemical EngineeringAnharmonicity0211 other engineering and technologiesAb initioThermodynamics02 engineering and technologyGeneral ChemistryFunction (mathematics)engineering.material01 natural sciencesInstabilityComputer Science ApplicationsPhysical propertysymbols.namesakeThermoelastic dampingHelmholtz free energy0103 physical sciencessymbolsengineeringPericlase021102 mining & metallurgy
researchProduct

2D Hydro-Mechanical-Chemical Modeling of (De)hydration Reactions in Deforming Heterogeneous Rock: The Periclase-Brucite Model Reaction

2020

Deformation at tectonic plate boundaries involves coupling between rock deformation, fluid flow, and metamorphic reactions, but quantifying this coupling is still elusive. We present a new two-dimensional hydro-mechanical-chemical numerical model and investigate the coupling between heterogeneous rock deformation and metamorphic (de)hydration reactions. We consider linear viscous compressible and power-law viscous shear deformation. Fluid flow follows Darcy's law with a Kozeny-Carman type permeability. We consider a closed isothermal system and the reversible (de)hydration reaction: periclase and water yields brucite. Fluid pressure within a circular or elliptical inclusion is initially bel…

010504 meteorology & atmospheric sciencesShear zoneChemical process modelingMetamorphic rockThermodynamicsNumerical simulationengineering.materialDeformation (meteorology)010502 geochemistry & geophysics01 natural sciencesPhysics::GeophysicsPhysics::Fluid DynamicsGeochemistry and PetrologyFluid dynamicsCoupling (piping)Brucite-Periclase reaction0105 earth and related environmental sciencesBruciteReaction-induced weakeningGeophysics13. Climate actionengineeringHydro-Mechanical-Chemical modelPericlaseShear zoneGeologyRock deformation coupled to reactions
researchProduct

Contamination of mafic magma by partial melting of dolomitic xenoliths

2001

Mg-skarns enclosed in dunite cumulates of the Neo-Proterozoic Ioko-Dovyren intrusion (northern Baikal region, Russia) can be traced to silica-poor dolomitic host rock layers. The dominant minerals of the skarns are brucite (pseudomorph after periclase), forsterite and Cr-poor spinel. Rapid heating of quartzpoor dolomitic xenoliths led to the formation of minor olivine, followed by the breakdown of dolomite to calcite and periclase. Xenoliths were partially melted upon further heating resulting in a calcite melt. This low-density melt was quantitatively squeezed out, mixed with the surrounding mafic magma and left behind periclase and olivine. This caused the crystallization of new olivine w…

OlivineBrucitePartial meltingGeochemistryGeologyForsteriteengineering.materialengineeringXenolithPericlaseMaficPseudomorphPetrologyGeologyTerra Nova
researchProduct

Lower mantle hydrogen partitioning between periclase and perovskite : a quantum chemical modelling

2016

Abstract Partitioning of hydrogen (often referred to as H2O) between periclase (pe) and perovskite (pvk) at lower mantle conditions (24–80 GPa) was investigated using quantum mechanics, equilibrium reaction thermodynamics and by monitoring two H-incorporation models. One of these (MSWV) was based on replacements provided by Mg2+ ↔ 2H+ and Si4+ ↔ 4H+; while the other (MSWA) relied upon substitutions in 2Mg2+ ↔ Al3+ + H+ and Si4+ ↔ Al3+ + H+. H2O partitioning in these phases was considered in the light of homogeneous (Bulk Silicate Earth; pvk: 75%–pe:16% model contents) and heterogeneous (Layered Mantle; pvk:78%–pe:14% modal contents) mantle geochemical models, which were configured for lower…

010504 meteorology & atmospheric sciencesHydrogenpericlaseAnalytical chemistrySocio-culturalechemistry.chemical_elementengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)chemistry.chemical_compoundGeochemistry and PetrologyOrganic chemistryH2O-partitioningperovskiteEquilibrium constant0105 earth and related environmental sciencesChemistryAb-initio calculationslowermantle; H2O-partitioning; periclase; perovskite.SilicatePartition coefficientlower mantleAnhydrousengineeringPericlaseChemical equilibriumlower mantle H2O-partitioning Ab-initio calculations periclase perovskite
researchProduct

About the reliability of the Maximum Entropy Method in reconstructing electron density: the case of MgO

2006

Abstract The reliability of the Maximum Entropy Method (MEM) to reconstruct finite temperature electron density (ED) is here discussed, investigating the case of periclase (MgO). A theoretical electron density has been generated by quantum mechanic calculations and folded with a function simulating atomic thermal motion, in order to produce a reference errorless ED [ρ(r)REF]. The Fourier coefficients of ρ(r)REF have been calculated, and used as “observed” diffraction intensities to reconstruct via MEM the original ED. The electron density attained by MEM [ρ(r)MEM] and ρ(r)REF have been compared with each other (pixel-by-pixel and critical points) to assess the ability of MEM to retrieve EDs…

DiffractionElectron densityYield (engineering)Basis (linear algebra)ChemistrypericlaseMaximum Entropy MethodMEMMgOFunction (mathematics)Condensed Matter PhysicsMEM; Maximum Entropy Method; electron density; periclase; MgOInorganic ChemistryTheoretical physicsOrder (group theory)General Materials Scienceelectron densityAtomic physicsFourier seriesQuantumZeitschrift für Kristallographie - Crystalline Materials
researchProduct