Search results for "pero"

showing 10 items of 3365 documents

Oxidative stress preconditioning of mouse perivascular myogenic progenitors selects a subpopulation of cells with a distinct survival advantage in vi…

2018

AbstractCell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in …

0301 basic medicineCancer ResearchCellular differentiationCellstem cells; oxidative stress; clone isolation/dk/atira/pure/subjectarea/asjc/2800/2804Mice SCIDp38 Mitogen-Activated Protein KinasesMiceCell MovementProtein IsoformsMuscular Dystrophy/dk/atira/pure/subjectarea/asjc/2400/2403Settore BIO/06 - Anatomia Comparata E Citologiaeducation.field_of_studylcsh:CytologyStem CellsSettore BIO/13Cell DifferentiationSkeletalCell biologymedicine.anatomical_structureMuscleMatrix Metalloproteinase 2Animals; Cell Cycle Checkpoints; Cell Differentiation; Cell Line; Cell Movement; Cell Survival; Hydrogen Peroxide; Matrix Metalloproteinase 2; Mice; Mice SCID; Muscle Skeletal; Muscular Dystrophy Animal; Oxidative Stress; Protein Isoforms; Reactive Oxygen Species; Sarcoglycans; Stem Cell Transplantation; Stem Cells; p38 Mitogen-Activated Protein Kinases/dk/atira/pure/subjectarea/asjc/1300/1306/dk/atira/pure/subjectarea/asjc/1300/1307Cell SurvivalPopulationImmunologyBiologySCIDArticleCell Line03 medical and health sciencesCellular and Molecular NeuroscienceIn vivoSarcoglycansmedicineAnimalsProgenitor celllcsh:QH573-671educationMuscle Skeletaloxidative streMesoangioblastAnimalCell BiologyCell Cycle CheckpointsHydrogen PeroxideMuscular Dystrophy Animalclone isolationTransplantationstem cellOxidative Stress030104 developmental biologyCell cultureReactive Oxygen SpeciesStem Cell TransplantationCell Death & Disease
researchProduct

Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of re…

2017

Hsp60 is a pro-carcinogenic chaperonin in certain tumor types by interfering with apoptosis and with tumor cell death. In these tumors, it is not known whether or not doxorubicin anti-tumor effects include a blockage of the pro-carcinogenic action of this protein. We used the human lung mucoepidermoid cell line NCI-H292 and different doses of doxorubicin to measure cell viability, cell cycle progression, cell senescence indicators, Hsp60 levels and its post-translational modifications as well as the release of the chaperonin into the extracellular environment. Cell viability was reduced in relation to doxorubicin dose and this was paralleled by the appearance of cell senescence markers. Con…

0301 basic medicineCancer ResearchLung NeoplasmsChaperoninsCellApoptosismedicine.disease_causeHistones0302 clinical medicineCellular SenescenceAntibiotics AntineoplasticAcetylationG2 Phase Cell Cycle Checkpointsmedicine.anatomical_structureOncology030220 oncology & carcinogenesisCell agingIntracellularProtein BindingSignal TransductionSenescenceCyclin-Dependent Kinase Inhibitor p21animal structuresCell Survivalchemical and pharmacologic phenomenaBiologycomplex mixturesMitochondrial ProteinsDoxorubicin Hsp60 Acetylation Ubiquitination p53 Replicative senescence03 medical and health sciencesDoxorubicin; Hsp60; p53; replicative senescence; post-translational modificationsCell Line TumormedicineHumansCell Proliferationdoxorubicin p53 Hsp60Dose-Response Relationship DrugCell growthfungiUbiquitinationChaperonin 60Molecular biology030104 developmental biologyAcetylationApoptosisDoxorubicinProteolysisCancer researchCarcinoma MucoepidermoidTumor Suppressor Protein p53CarcinogenesisProtein Processing Post-Translational
researchProduct

Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis

2017

Increased oxidative stress has been suggested to initiate and promote tumorigenesis by inducing DNA damage and to suppress tumor development by triggering apoptosis and senescence. The contribution of individual cell types in the tumor microenvironment to these contrasting effects remains poorly understood. We provide evidence that during intestinal tumorigenesis, myeloid cell-derived H2O2 triggers genome-wide DNA mutations in intestinal epithelial cells to stimulate invasive growth. Moreover, increased reactive oxygen species (ROS) production in myeloid cells initiates tumor growth in various organs also in the absence of a carcinogen challenge in a paracrine manner. Our data identify an i…

0301 basic medicineCancer ResearchMyeloidDNA damageApoptosismedicine.disease_causeMice03 medical and health sciencesParacrine signallingmedicineAnimalsMyeloid Cellschemistry.chemical_classificationReactive oxygen speciesTumor microenvironmentChemistryEpithelial CellsHydrogen PeroxideCell BiologyMice Mutant StrainsCell biologyOxidative Stress030104 developmental biologymedicine.anatomical_structureOncologyMutagenesisMutationTumor necrosis factor alphaReactive Oxygen SpeciesCarcinogenesisOxidative stressDNA DamageSignal TransductionCancer Cell
researchProduct

Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis

2016

Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a ge…

0301 basic medicineCancer ResearchNecrosismedicine.disease_causeCancer -- Treatmentchemistry.chemical_compoundOnium CompoundsMedicineCytotoxic T cellBreast -- CancerMembrane Potential Mitochondrialchemistry.chemical_classificationSuperoxideMitochondrial DNAMitochondriaNeoplastic Stem CellsFemaleOriginal Articlemedicine.symptomOligopeptidesSesquiterpenesCell SurvivalNF-E2-Related Factor 2ImmunologyBreast NeoplasmsReal-Time Polymerase Chain Reaction03 medical and health sciencesCellular and Molecular NeuroscienceDownregulation and upregulationCell Line TumorHumansParthenolideparthenolide cancer stem cell triple-negative breast cancer reactive oxygen species nuclear factor erythroid 2-related factor 2Fluorescent DyesReactive oxygen speciesbusiness.industryAcetophenonesNADPH OxidasesCell BiologyCell nuclei -- AbnormalitiesOxidative Stress030104 developmental biologychemistryApocyninImmunologyCancer researchReactive Oxygen SpeciesbusinessOxidative stressTranscription FactorsCell Death & Disease
researchProduct

Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis.

2018

Summary Metastasis is the primary cause of death of cancer patients. Dissecting mechanisms governing metastatic spread may uncover important tumor biology and/or yield promising therapeutic insights. Here, we investigated the role of circular RNAs (circRNA) in metastasis, using melanoma as a model aggressive tumor. We identified silencing of cerebellar degeneration-related 1 antisense (CDR1as), a regulator of miR-7, as a hallmark of melanoma progression. CDR1as depletion results from epigenetic silencing of LINC00632, its originating long non-coding RNA (lncRNA) and promotes invasion in vitro and metastasis in vivo through a miR-7-independent, IGF2BP3-mediated mechanism. Moreover, CDR1as le…

0301 basic medicineCancer ResearchRegulatorNerve Tissue ProteinsBiologyAutoantigensArticleMetastasisEpigenesis Genetic03 medical and health sciences0302 clinical medicinemedicineGene silencingHumansEnhancer of Zeste Homolog 2 ProteinNeoplasm InvasivenessRNA AntisenseGene SilencingNeoplasm MetastasisMelanomaMelanomaEZH2RNACancerRNA-Binding ProteinsRNA Circularmedicine.diseasePhospholipid Hydroperoxide Glutathione PeroxidasePrognosisMicroRNAs030104 developmental biologyOncology030220 oncology & carcinogenesisCancer researchbiology.proteinRNA Long NoncodingPRC2Cancer cell
researchProduct

2-Methoxyestradiol Affects Mitochondrial Biogenesis Pathway and Succinate Dehydrogenase Complex Flavoprotein Subunit A in Osteosarcoma Cancer Cells.

2017

Background/aim Dysregulation of mitochondrial pathways is implicated in several diseases, including cancer. Notably, mitochondrial respiration and mitochondrial biogenesis are favored in some invasive cancer cells, such as osteosarcoma. Hence, the aim of the current work was to investigate the effects of 2-methoxyestradiol (2-ME), a potent anticancer agent, on the mitochondrial biogenesis of osteosarcoma cells. Materials and methods Highly metastatic osteosarcoma 143B cells were treated with 2-ME separately or in combination with L-lactate, or with the solvent (non-treated control cells). Protein levels of α-syntrophin and peroxisome proliferator-activated receptor gamma, coactivator 1 alph…

0301 basic medicineCancer ResearchSIRT3Protein subunitSDHAMuscle ProteinsAntineoplastic AgentsMolecular Dynamics SimulationBiochemistryElectron Transport Complex IV03 medical and health sciences0302 clinical medicineGeneticSettore BIO/10 - BiochimicaCell Line TumorSirtuin 3CoactivatorGeneticsHumansMolecular BiologyOsteosarcomaOrganelle BiogenesisbiologyEstradiolSettore BIO/16 - Anatomia UmanaChemistryElectron Transport Complex IICalcium-Binding ProteinsMembrane ProteinsPeroxisomeMitochondrial biogenesiPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaCell biology2-MethoxyestradiolMitochondriaSuccinate dehydrogenaseMolecular Docking Simulation030104 developmental biologyMitochondrial biogenesisSettore CHIM/03 - Chimica Generale E Inorganica030220 oncology & carcinogenesisSirtuinCancer cellbiology.proteinResearch ArticleCancer genomicsproteomics
researchProduct

Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase

2017

The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly,…

0301 basic medicineCancer ResearchThioredoxin reductaseSynthesis PhaseYeast and Fungal ModelsBiochemistryElectron DonorsSchizosaccharomyces PombeThioredoxinsGlutaredoxinCell Cycle and Cell DivisionGenetics (clinical)Chemical ReactionsOxidesPeroxidesNucleic acidsChemistryRibonucleotide reductaseBiochemistryExperimental Organism SystemsCell ProcessesSchizosaccharomyces pombePhysical SciencesSynthesis phaseThioredoxinOxidation-ReductionResearch ArticleDNA Replicationlcsh:QH426-470DNA transcriptionElectron donorsBiologyDNA replicationResearch and Analysis MethodsCatalysisElectron Transport03 medical and health sciencesModel OrganismsSchizosaccharomycesRibonucleotide ReductasesOxidationGeneticsMolecular BiologyEcology Evolution Behavior and SystematicsGlutaredoxinsCell growthDNA replicationChemical CompoundsOrganismsFungiBiology and Life SciencesCell BiologyDNAPeroxiredoxinsbiology.organism_classificationYeastCell cycle and cell divisionCheckpoint Kinase 2lcsh:Genetics030104 developmental biologySchizosaccharomyces pombeGene expressionSchizosaccharomyces pombe ProteinsPeroxiredoxin
researchProduct

Hypoxia-Inducible Factor-1α Activity as a Switch for Glioblastoma Responsiveness to Temozolomide

2018

Rationale: The activity of the transcription factor, hypoxia-inducible factor (HIF)-1?, is a common driver of a number of the pathways involved in the aggressiveness of glioblastomas (GBMs), and it has been suggested that the reduction in this activity observed, soon after the administration of temozolomide (TMZ), can be a biomarker of an early response in GBM models. As HIF-1? is a tightly regulated protein, studying the processes involved in its downregulation could shed new light on the mechanisms underlying GBM sensitivity or resistance to TMZ. Methods: The effect of HIF-1? silencing on cell responsiveness to TMZ was assessed in four genetically different human GBM cell lines by evaluat…

0301 basic medicineCancer Researchapoptosis; chaperone-mediated autophagy activity; hypoxia-inducible factor-1? silencing; temozolomide responsiveness; theranostic biomarkerBiologylcsh:RC254-28203 medical and health scienceshypoxia-inducible factor-1α silencing0302 clinical medicineGliomamedicineGene silencingViability assayTranscription factorOriginal Researchchaperone-mediated autophagy activityTemozolomideAutophagyapoptosismedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenstheranostic biomarker030104 developmental biologyHypoxia-inducible factorsOncologyApoptosis030220 oncology & carcinogenesisCancer researchtemozolomide responsivenessmedicine.drugFrontiers in Oncology
researchProduct

Cancer Acidity and Hypertonicity Contribute to Dysfunction of Tumor-Associated Dendritic Cells: Potential Impact on Antigen Cross-Presentation Machin…

2020

Macrophages (M) and dendritic cells (DC), major players of the mononuclear phagocyte system (MoPh), are potent antigen presenting cells that steadily sense and respond to signals from the surrounding microenvironment, leading to either immunogenic or tolerogenic outcomes. Next to classical MHC-I/MHC-II antigen-presentation pathways described in the vast majority of cell types, a subset of MoPh (CD8+, XCR1+, CLEC9A+, BDCA3+ conventional DCs in human) is endowed with a high competence to cross-present external (engulfed) antigens on MHC-I molecules to CD8+ T-cells. This exceptional DC function is thought to be a crucial crossroad in cytotoxic antitumor immunity and has been extensively studie…

0301 basic medicineCancer Researchcancer acidityReviewMajor histocompatibility complexlcsh:RC254-28203 medical and health sciences0302 clinical medicineAntigenCytotoxic T celltumor microenvironmentAntigen-presenting cellcross-presentationTumor microenvironmentbiologyChemistryCross-presentationMononuclear phagocyte systemlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensWarburg effectCell biology030104 developmental biologyOncologyhyperosmolarity030220 oncology & carcinogenesisbiology.proteinCancers
researchProduct

Abstract 2810: Pterostilbene, a natural phytoalexin, weakens the antioxidant defenses of aggressive cancer cells in vivo: a pituitary gland- and Nrf2…

2016

Abstract Polyphenolic phytochemicals have anticancer properties. However, in mechanistic studies lack of correlation to the bioavailable concentrations is a critical issue. We studied the underlying mechanisms using different human melanomas (A2058, MeWo and MelJuso) and pancreatic cancers (AsPC-1 and BxPC-3) (with genetic backgrounds correlating with most tumors in patients), growing in nude mice as xenografts, and pterostilbene (Pter, 3’,5’-dimethoxy-4-stilbenol; abundant in e.g. blueberries and a natural dimethoxylated analog of resveratrol). RESULTS: Intravenous administration of Pter decreased human melanoma and pancreatic cancer growth (an effect associated with lower rates of tumor c…

0301 basic medicineCancer Researchmedicine.medical_specialtyPterostilbenebiologyResveratrolmedicine.diseaseSuperoxide dismutase03 medical and health scienceschemistry.chemical_compound030104 developmental biologyEndocrinologyGlucocorticoid receptorOncologychemistryApoptosisPancreatic cancerInternal medicineCancer cellmedicinebiology.proteinCancer researchGlucocorticoidmedicine.drugCancer Research
researchProduct