Search results for "perturbation theory"
showing 10 items of 584 documents
Ab initio determination of the electron affinities of DNA and RNA nucleobases
2008
High-level quantum-chemical ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute the vertical and adiabatic electron affinities of the five canonical DNA and RNA nucleobases: uracil, thymine, cytosine, adenine, and guanine. The present results aim for the accurate determination of the intrinsic electron acceptor properties of the isolated nucleic acid bases as described by their electron affinities, establishing an overall set of theoretical reference values at a level not reported before and helping to rule out less reliable theoretical and experimental data and to calibrate theoretical strategies. Daniel.Roca@uv.es Manuela.Merchan@uv.es Luis.Se…
First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases
2020
An extensive theoretical characterization of the singlet excited state manifold of the five canonical DNA/RNA nucleobases (thymine, cytosine, uracil, adenine and guanine) in gas-phase is carried out with time-dependent density functional theory (TD-DFT) and restricted active space second-order perturbation theory (RASPT2) approaches. Both ground state and excited state absorptions are analyzed and compared between these different theoretical approaches, assessing the performance of the hybrid B3LYP and CAM-B3LYP (long-range corrected) functionals with respect to the RASPT2 reference. By comparing the TD-DFT estimates with our reference for high-lying excited states, we are able to narrow do…
K− over K+ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual-photon energy
2018
The K$^{-}$ over K$^{+}$ multiplicity ratio is measured in deep-inelastic scattering, for the first time for kaons carrying a large fraction $z$ of the virtual-photon energy. The data were obtained by the COMPASS collaboration using a 160 GeV muon beam and an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2>1$ (GeV/$c)^2$ for the photon virtuality and $W>5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. Kaons are identified in the momentum range from 12 GeV/$c$ to 40 GeV/$c$, thereby restricting the range in Bjorken-$x$ to $0.010.75$. For very large values of $z$, $i.e.$ $z>0.8$, we observe the kaon multiplicity ratio to fall …
Determination of the Chiral Couplings L10 and C87 from Semileptonic τ Decays
2008
Using recent precise hadronic tau-decay data on the V-A spectral function, and general properties of QCD such as analyticity, the operator product expansion and chiral perturbation theory, we get accurate values for the QCD chiral order parameters L_10^r(M_rho) and C_87^r(M_rho). These two low-energy constants appear at order p^4 and p^6, respectively, in the chiral perturbation theory expansion of the V-A correlator. At order p^4 we obtain L_10^r(M_rho) = -(5.22\pm 0.06)10^{-3}. Including in the analysis the two-loop (order p^6) contributions, we get L_10^r(M_rho) = -(4.06\pm 0.39)10^{-3} and C_87^r(M_rho) = (4.89\pm 0.19)10^{-3}GeV^{-2}. In the SU(2) chiral effective theory, the correspon…
Quantum loops in radiative decays of the a(1) and b(1) axial-vector mesons
2007
10 pages, 4 figures.-- ISI Article Identifier: 000251895400004.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0611075
Matter Dependence of the Four-Loop Cusp Anomalous Dimension
2019
We compute analytically the matter-dependent contributions to the quartic Casimir term of the four-loop light-like cusp anomalous dimension in QCD, with $n_f$ fermion and $n_s$ scalar flavours. The result is extracted from the double pole of a scalar form factor. We adopt a new strategy for the choice of master integrals with simple analytic and infrared properties, which significantly simplifies our calculation. To this end we first identify a set of integrals whose integrands have a dlog form, and are hence expected to have uniform transcendental weight. We then perform a systematic analysis of the soft and collinear regions of loop integration and build linear combinations of integrals w…
Slow roll in simple non-canonical inflation
2007
17 pages, 4 figures.-- ISI Article Identifier: 000245945000008.-- ArXiv pre-print available at: http://arxiv.org/abs/astro-ph/0701343
The 1-loop effective potential for the Standard Model in curved spacetime
2018
The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…
Massless positivity in graviton exchange
2021
We formulate Positivity Bounds for scattering amplitudes including exchange of massless particles. We generalize the standard construction through dispersion relations to include the presence of a branch cut along the real axis in the complex plane for the Maldestam variable $s$. In general, validity of these bounds require the cancellation of divergences in the forward limit of the amplitude, proportional to $t^{-1}$ and $\log(t)$. We show that this is possible in the case of gravitons if one assumes a Regge behavior of the amplitude at high energies below the Planck scale, as previously suggested in the literature, and that the concrete UV behaviour of the amplitude is uniquely determined…
Hadronic light-by-light scattering contribution to the muon $g-2$ from lattice QCD: semi-analytical calculation of the QED kernel
2023
Hadronic light-by-light scattering is one of the virtual processes that causes the gyromagnetic factor $g$ of the muon to deviate from the value of two predicted by Dirac's theory. This process makes one of the largest contributions to the uncertainty of the Standard Model prediction for the muon $(g-2)$. Lattice QCD allows for a first-principles approach to computing this non-perturbative effect. In order to avoid power-law finite-size artifacts generated by virtual photons in lattice simulations, we follow a coordinate-space approach involving a weighted integral over the vertices of the QCD four-point function of the electromagnetic current carried by the quarks. Here we present in detai…