Search results for "phase separation"
showing 10 items of 62 documents
AN EXPERIMENTAL APPARATUS TO CHARACTERIZE PHASE SEPARATION IN POLYMER SOLUTIONS
2013
Cholesterol facilitates interactions between α‐synuclein oligomers and charge‐neutral membranes
2015
AbstractOligomeric species formed during α-synuclein fibrillation are suggested to be membrane-disrupting agents, and have been associated with cytotoxicity in Parkinson’s disease. The majority of studies, however, have revealed that the effect of α-synuclein oligomers is only noticeable on systems composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model membranes are either unperturbed, disrupt, or undergo dramatic morphological changes and segregate …
CLOUD POINT MEASUREMENTS IN MEMBRANE FORMING SYSTEMS
2012
USO DI TECNICHE AVANZATE PER LA OTTIMIZZAZIONE STRUTTURALE E FUNZIONALE DI SCAFFOLD COMPOSITI POLIMERO-CARICA INORGANICA PER LA RIGENERAZIONE OSSEA.
2020
Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation
2021
Summary Engineering new functionality into living eukaryotic systems by enzyme evolution or de novo protein design is a formidable challenge. Cells do not rely exclusively on DNA-based evolution to generate new functionality but often utilize membrane encapsulation or formation of membraneless organelles to separate distinct molecular processes that execute complex operations. Applying this principle and the concept of two-dimensional phase separation, we develop film-like synthetic organelles that support protein translation on the surfaces of various cellular membranes. These sub-resolution synthetic films provide a path to make functionally distinct enzymes within the same cell. We use t…
PLLA-BASED SCAFFOLDS FOR OSTEOCHONDRAL TISSUE REGENERATION VIA THERMALLY INDUCED PHASE SEPARATION TECHNIQUE
L’ingegneria tessutale (TE) è una scienza multidisciplinare che mira a progettare e sviluppare sostituti biologici per migliorare, riparare e/o sostituire i tessuti negli organismi umani. Sulla base della tipica triade dell’ingegneria tessutale è incentrato il primo capitolo Scaffold, Source and Signal; lo scaffold funge da struttura tridimensionale, le cellule rappresentano la source mentre il bioreattore fornisce gli adeguati segnali chimico/fisici. In questo lavoro di tesi sono stati presi in considerazione tutti e tre questi aspetti avendo come obiettivo la rigenerazione osteocondrale. La guarigione dei difetti osteocondrali, riguardanti le lesioni della cartilagine che si esten- dono f…
Polymeric scaffolds prepared via thermally induced phase separation: Tuning of structure and morphology
2008
Scaffolds suitable for tissue engineering applications like dermal reconstruction were prepared by Thermally Induced Phase Separation (TIPS) starting from a ternary solution PLLA/dioxane/water. The experimental protocol consisted of three consecutive steps, a first quench from the homogeneous solution to an appropriate demixing temperature (within the metastable region), a holding stage for a given residence time, and a final quench from the demixing temperature to a low temperature (within the unstable region). A large variety of morphologies, in terms of average pore size and interconnection, were obtained upon modifying the demixing time and temperature, owing to the interplay of nucleat…
PLLA biodegradable scaffolds for Vascular Tissue Engineering (VTE) applications via dip drawing and Diffusion Induced Phase Separation (DIPS)
2009
Accelerated ageing due to moisture absorption of thermally cured epoxy resin/polyethersulphone blends. Thermal, mechanical and morphological behaviour
2011
Abstract A model epoxy resin/anhydride system, modified with a polyethersulfone (PES) engineering thermoplastic toughening agent, has been studied under hydrothermal ageing in order to investigate the modification of the thermal, morphological and mechanical behaviour through dynamical mechanical thermal analysis, SEM microscopy and fracture toughness test respectively. Two different concentrations of the toughening agent were used in the blends and two ageing conditions have been considered, consisting of the immersion of the samples in distilled water at constant temperature of 70 °C for 1 week and for 1 month. Dynamical mechanical thermal analysis results on hydrothermally aged materials…