Search results for "photoelectron spectroscopy"

showing 10 items of 439 documents

The growth of oxide platelets on nickel in pure oxygen. II. Surface analyses and growth mechanism

1993

The structural properties of NiO platelets emerging from a primary oxide layer by oxidation of pretreated nickels in pure oxygen between 650 and 800° C have been investigated in relation with the initial metallic layers and the primary oxide. Surface composition and segregation of impurities were also studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Textural properties and structural orientation of both the primary oxide layer and the platelets were analyzed by X-ray diffraction and transmission electron microscopy. Platelets grew along {111} planes, leading to elliptical or semicircular bicrystals. The driving force for the present type of growth originates from…

Auger electron spectroscopyMetals and AlloysOxidechemistry.chemical_elementInorganic ChemistryMetalchemistry.chemical_compoundNickelCrystallographychemistryX-ray photoelectron spectroscopyImpurityTransmission electron microscopyvisual_artMaterials Chemistryvisual_art.visual_art_mediumLayer (electronics)Oxidation of Metals
researchProduct

Effect of the surface stoichiometry on the interaction of Mo with TiO2 (110)

2000

Abstract Molydenum has been deposited at room temperature on (110) TiO2 surfaces with different stoichiometries, roughnesses and crystallinities. Whatever the substrate preparation is, in-situ Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) studies as well as ex-situ atomic force microscopy (AFM) and reflexion high-energy electron diffraction (RHEED) studies reveal a Stranski–Krastanov growth mode: the completion of three monolayers followed by islands growth is observed in every case. The three monolayers are always composed of amorphous molybdenum oxide with an oxidation state of molybdenum less than IV. The oxidation of the molybdenum layers generates Ti3+ an…

Auger electron spectroscopyReflection high-energy electron diffractionChemistryAnalytical chemistrychemistry.chemical_elementSurfaces and InterfacesSubstrate (electronics)Condensed Matter PhysicsElectron beam physical vapor depositionSurfaces Coatings and FilmsCrystallographyX-ray photoelectron spectroscopyElectron diffractionMolybdenumMonolayerMaterials ChemistrySurface Science
researchProduct

Passive properties of lean duplex stainless steels after long-term ageing in air studied using EBSD, AES, XPS and local electrochemical impedance spe…

2013

Abstract Passivity of duplex stainless steel was studied after long-term ageing in air using local electrochemical impedance spectroscopy, AES, XPS and EBSD. After mechanical polishing, the passive film was homogeneous and had a capacitive behaviour described by the CPE. After long-term ageing, a small thickening was detected and O2−/OH− was significantly higher in the austenite than in the ferrite. Austenite behaved as a blocking electrode whereas two capacitive loops were observed in the ferrite (low value of O2−/OH). The loop at high frequencies was related with the oxygen reduction and the loop at low frequencies was connected with the passive film.

AusteniteMaterials scienceGeneral Chemical EngineeringCapacitive sensingMetallurgyGeneral ChemistryDielectric spectroscopyCorrosionX-ray photoelectron spectroscopyFerrite (iron)ElectrodeGeneral Materials ScienceComposite materialElectron backscatter diffractionCorrosion Science
researchProduct

Generic Method for Modular Surface Modification of Cellulosic Materials in Aqueous Medium by Sequential Click-Reaction and Adsorption

2012

A generic approach for heterogeneous surface modification of cellulosic materials in aqueous medium, applicable for a wide range of functionalizations, is presented. In the first step, carboxymethyl cellulose (CMC) modified with azide or alkyne functionality, was adsorbed on a cellulosic substrate, thus, providing reactive sites for azide–alkyne cycloaddition click reactions. In the second step, functional units with complementary click units were reacted on the cellulose surface, coated by the click-modified CMC. Selected model functionalizations on diverse cellulosic substrates are shown to demonstrate the generality of the approach. The concept by sequentially combining the robust physic…

AzidesMagnetic Resonance SpectroscopyPolymers and PlasticsSurface Propertiesta221BioengineeringMicroscopy Atomic ForceCatalysisNanocellulosePolyethylene GlycolsmaterialsBiomaterialschemistry.chemical_compoundAdsorptionSpectroscopy Fourier Transform Infraredotorhinolaryngologic diseasesMaterials ChemistrymedicineOrganic chemistryAnimalsCotton FiberCelluloseta216ta116ta215ta218nanocelluloseFluorescent Dyesta214ta114Photoelectron Spectroscopyclick-reactionsSubstrate (chemistry)WaterSerum Albumin BovineCombinatorial chemistrycelluloseCarboxymethyl cellulosefunctionalchemistryadsorptionAlkynesCarboxymethylcellulose SodiumSurface functionalizationClick chemistrySurface modificationCattleAzidemedicine.drugBIOMACROMOLECULES
researchProduct

Synthesis and Characterization of a Stable Copper(I) Complex for Radiopharmaceutical Applications

2014

A highly stable copper(I) complex was obtained starting from a copper(II) salt. This compound was characterized by a combination of several analytical techniques (UV/Vis spectroscopy, energy-dispersive X-ray spectroscopy, electrochemistry, and X-ray photoelectron spectroscopy) and was shown to present an N4Cu structure. These results were confirmed by a density functional calculations study of the binding energy and the electronic structure of model ligand and copper complexes. Preliminary tests of complexation showed a high ability of the corresponding ligand to chelate 64Cu in very diluted medium, which is of interest for developing new positron emission tomography imaging agents. The sta…

BioconjugationX-ray photoelectron spectroscopyChemistryLigandInorganic chemistrychemistry.chemical_elementChelationGeneral ChemistryElectrochemistrySpectroscopyCopperRedoxChemPlusChem
researchProduct

Structural and functional characterization of enamel pigmentation in shrews.

2013

Pigmented tooth enamel occurs in several vertebrate clades, ranging from mammals to fish. Although an iron compound is associated with this orange to red colored pigmentation, its chemical and structural organization within the enamel is unknown. To determine the nature of the iron compound, we investigated heavily pigmented teeth of the northern short-tailed shrew Blarina brevicauda using combined characterization techniques such as scanning and transmission electron microscopy and synchrotron X-ray diffraction. We found that the pigmentation of the enamel with an iron content of around 8wt% results from a close to amorphous magnetite phase deposited around the nm-sized enamel crystals. Fu…

Blarina brevicaudaMineralogychemistry.chemical_compoundstomatognathic systemMicroscopy Electron TransmissionX-Ray DiffractionStructural BiologyHardnessbiology.animalElastic ModulusmedicineAnimalsDental EnamelMagnetiteEnamel paintbiologyChemistryPigmentationPhotoelectron SpectroscopyShrewsShrewNanoindentationTooth enamelbiology.organism_classificationFerrosoferric Oxidestomatognathic diseasesmedicine.anatomical_structureTransmission electron microscopyvisual_artIron contentDentinvisual_art.visual_art_mediumBiophysicsJournal of structural biology
researchProduct

XPS study of supported gold catalysts:the role of Au0 and Au+? species as active sites.

2006

Gold nanoparticles supported on different oxides (SiO2, CeO2 and TiO2) were prepared by the SMAD (solvated metal atom dispersion) and deposition–precipitation (DP) techniques. The physical and chemical characterization of the catalysts was performed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and the catalytic activity was tested during the reaction of low temperature CO oxidation. The structural and surface analyses evidenced the presence of small gold crystallites (cluster size ∼2–5 nm) in all the SMAD-prepared samples and oxidized gold species in the case of the DP catalysts. A different surface distribution of ionic gold species was found on the different suppo…

Cerium oxideChemistryInorganic chemistryIonic bondingSurfaces and InterfacesGeneral ChemistryAtmospheric temperature rangeCondensed Matter PhysicsSurfaces Coatings and FilmsCatalysisMetalTransition metalX-ray photoelectron spectroscopyColloidal goldvisual_artMaterials Chemistryvisual_art.visual_art_medium
researchProduct

Relationship between structure and CO oxidation activity of ceria supported gold catalysts

2005

Gold catalysts supported on cerium oxide were prepared by solvated metal atom dispersion (SMAD), by deposition-precipitation (DP), and by coprecipitation (CP) methods and were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The catalytic activity was tested in the CO oxidation reaction. The structural and surface analyses evidenced the presence of a modified ceria phase in the case of the DP sample and the presence of pure ceria and gold metal crystallites in the case of the SMAD and CP samples. The DP sample, after a mild treatment in air at 393 K, exhibited only ionic gold, and it was very active below 273 K. By…

Cerium oxideCoprecipitationChemistryInorganic chemistryIonic bondingSurfaces Coatings and FilmsCatalysisMetalX-ray photoelectron spectroscopyvisual_artMaterials Chemistryvisual_art.visual_art_mediumPhysical and Theoretical ChemistryTemperature-programmed reductionDispersion (chemistry)
researchProduct

Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering.

2010

The interaction of Pt with CeO(2) layers was investigated by using photoelectron spectroscopy. The 30 nm thick Pt doped CeO(2) layers were deposited simultaneously by rf-magnetron sputtering on a Si(001) substrate, multiwall carbon nanotubes (CNTs) supported by a carbon diffusion layer of a polymer membrane fuel cell and on CNTs grown on the silicon wafer by the CVD technique. The synchrotron radiation X-ray photoelectron spectra showed the formation of cerium oxide with completely ionized Pt(2+,4+) species, and with the Pt(2+)/Pt(4+) ratio strongly dependent on the substrate. The TEM and XRD study showed the Pt(2+)/Pt(4+) ratio is dependent on the film structure.

Cerium oxideMaterials scienceAnalytical chemistryMineralogychemistry.chemical_elementSurfaces and InterfacesChemical vapor depositionSubstrate (electronics)Sputter depositionCondensed Matter PhysicschemistryX-ray photoelectron spectroscopySputteringElectrochemistryGeneral Materials ScienceThin filmPlatinumSpectroscopyLangmuir : the ACS journal of surfaces and colloids
researchProduct

Growth and composition of nanostructured and nanoporous cerium oxide thin films on a graphite foil.

2015

The morphology and composition of CeOx films prepared by r.f. magnetron sputtering on a graphite foil have been investigated mainly by using microscopy methods. This study presents the formation of nanocrystalline layers with porous structure due to the modification of a carbon support and the formation of cerium carbide crystallites as a result of the deposition process. Chemical analyses of the layers with different thicknesses performed by energy dispersive X-ray spectroscopy, electron energy loss spectroscopy and X-ray photoelectron spectroscopy have pointed to the reduction of the cerium oxide layers. In the deposited layers, cerium was present in mixed Ce(3+) and Ce(4+) valence. Ce(3+…

Cerium oxideMaterials scienceElectron energy loss spectroscopyInorganic chemistrychemistry.chemical_elementSputter depositionCeriumChemical stateChemical engineeringchemistryX-ray photoelectron spectroscopyGeneral Materials ScienceGraphiteThin filmNanoscale
researchProduct