Search results for "photoemission"

showing 10 items of 174 documents

High Tolerance of Double-Decker Phthalocyanine toward Molecular Oxygen

2018

Because organic electronics suffer from degradation-inducing oxidation processes, oxygen-tolerant organic molecules could solve this issue and be integrated to improve the stability of devices during operation. In this work, we investigate how lutetium double-decker phthalocyanine (LuPc2) reacts toward molecular oxygen and we report microscopic details of its interaction with LuPc2 film by combining X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory. Surprisingly, LuPc2 molecules are found to weakly physisorb below 120 K and appear rather inert to molecular oxygen at more elevated temperatures. We are able to draw a micros…

Organic electronicsMaterials science010405 organic chemistryPhotoemission spectroscopychemistry.chemical_elementCondensed Matter Physics010402 general chemistryPhotochemistry01 natural sciencesOxygen0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral EnergychemistryPhthalocyanineMoleculeDensity functional theoryPhysical and Theoretical ChemistryAbsorption (chemistry)SpectroscopyDen kondenserade materiens fysikThe Journal of Physical Chemistry C
researchProduct

Spin structure and spin Hall magnetoresistance of epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO 3

2019

We report a combined study of imaging the antiferromagnetic (AFM) spin structure and measuring the spin Hall magnetoresistance (SMR) in epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO3. X-ray magnetic linear dichroism photoemission electron microscopy measurements reveal that the AFM spins of the SmFeO3(1 1 0) align in the plane of the film. Angularly dependent magnetoresistance measurements show that SmFeO3/Ta bilayers exhibit a positive SMR, in contrast to the negative SMR expected in previously studied collinear AFMs. The SMR amplitude increases linearly with increasing external magnetic field at higher magnetic fields, suggesting that field-induced canting of …

OrthoferriteMaterials scienceMagnetoresistancetechnology industry and agricultureSpin structureCoercivityCondensed Matter PhysicsCondensed Matter::Materials ScienceMagnetizationPhotoemission electron microscopyAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceSpin-½
researchProduct

Effect of Composition on the Photoelectrochemical Behavior of Anodic Oxides on Binary Aluminum Alloys

2006

The photoelectrochemical behavior of anodic films on Al alloys, containing titanium, tantalum, and tungsten (valve metals), has been studied as a function of alloy composition and anodizing conditions. Photocurrent spectroscopy has been used to get information on bandgap and the flatband potential values of different mixed oxides. Both insulator-like and semiconducting behavior has been observed for anodic oxides grown on Al-W and Al-Ti alloys dependent on alloy initial composition. Optical bandgap values, E opt g , of different oxides are in accordance with predictions based on the correlation between E opt g and the difference of electronegativities of the oxide constituents, indicating p…

PASSIVE FILMSMaterials scienceAlloyOxideTantalumchemistry.chemical_elementTungstenengineering.materialchemistry.chemical_compoundWO3Materials ChemistryElectrochemistryPHOTOEMISSION PROCESSESDEPOSITIONPhotocurrentSPECTROSCOPYRenewable Energy Sustainability and the EnvironmentAnodizingFILM FORMATIONMetallurgyIONIC TRANSPORTCORROSIONCondensed Matter PhysicsTA2O5Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringengineeringPHOTOEMISSION PROCESSES; IONIC TRANSPORT; FILM FORMATION; PASSIVE FILMS; CORROSION; TA2O5; WO3; CRYSTALLIZATION; SPECTROSCOPY; DEPOSITIONCRYSTALLIZATIONTernary operationTitaniumJournal of The Electrochemical Society
researchProduct

Magnetization dynamics in polycrystalline Permalloy and epitaxial Co platelets observed by time-resolved photoemission electron microscopy

2009

We studied the dynamic magnetization response in rectangular polycrystalline Permalloy and also epitaxial Co structures (lateral sizes comprised tens of microns at a thickness of tens of nanometers) during the action of a magnetic field pulse, using time-resolved X-ray photoemission electron microscopy with a time resolution of 10 ps. In the case of Permalloy platelets the restoring torque that is necessary for the stroboscopic image acquisition is provided by the Landau flux closure structure representing a minimum of the free energy. We investigated the dynamic response of 90° Neel domain walls. The main results are: the maximum velocity of the domain wall is 1.5 × 104 m/s, the intrinsic …

PermalloyCondensed Matter::Materials SciencePhotoemission electron microscopyMagnetization dynamicsMagnetizationMagnetic anisotropyDomain wall (magnetism)Condensed matter physicsChemistryCondensed Matter PhysicsAnisotropyElectronic Optical and Magnetic MaterialsMagnetic fieldphysica status solidi (b)
researchProduct

Sub-nanosecond resolution x-ray magnetic circular dichroism photoemission electron microscopy of magnetization processes in a permalloy ring

2005

Fast magnetization processes in a microstructured permalloy ring with 80 µm o.d. and 30 nm thickness have been observed by photoemission electron microscopy exploiting x-ray magnetic circular dichroism as the magnetic contrast mechanism. As a high speed probe we employed synchrotron radiation pulses at the ESRF (Grenoble) operated in 16-bunch mode, yielding photon pulses of 105 ps FWHM with a period of 176 ns. Fast magnetic field pulses have been generated by means of current pulses through coplanar waveguides with the magnetic structure being lithographically prepared on their surface. A stroboscopic pump–probe set-up with a variable time delay between the field pulse and photon pulse allo…

PermalloyMagnetic domainbusiness.industryMagnetic circular dichroismChemistrySynchrotron radiationCondensed Matter PhysicsMagnetic fieldMagnetizationPhotoemission electron microscopyOpticsX-ray magnetic circular dichroismGeneral Materials ScienceAtomic physicsbusinessJournal of Physics: Condensed Matter
researchProduct

Time-resolved X-ray photoemission electron microscopy: imaging magnetodynamics on the 100 ps scale and below

2005

Abstract We present recent results of time-resolved X-ray photoemission electron microscopy (TR-XPEEM) investigations on magnetic systems. Our studies of microstructured permalloy particles employ a magnetic pump XPEEM probe approach. The stroboscopic experiments feature a time resolution of Δ τ ≤ 130  ps and yield magnetic domain images with a surprising richness of details. We observe a strong influence of incoherent magnetization rotation processes, which lead to complicated transient domain structures with a blocked relaxation behavior.

PermalloyMagnetization dynamicsRadiationMagnetic domainChemistryInverse photoemission spectroscopyAngle-resolved photoemission spectroscopyCondensed Matter PhysicsMolecular physicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionMagnetizationPhotoemission electron microscopyNuclear magnetic resonancelawPhysical and Theoretical ChemistryElectron microscopeSpectroscopyJournal of Electron Spectroscopy and Related Phenomena
researchProduct

Stroboscopic XMCD–PEEM imaging of standing and propagating spinwave modes in permalloy thin-film structures

2007

Abstract Using synchrotron-based stroboscopic photoemission electron microscopy with X-ray circular dichroism as contrast method, we have investigated the high-frequency response of permalloy thin-film structures. Standing precessional modes have been studied in rectangular elements (16 × 32 μm 2 , 10 nm thick) with a high time resolution of about 15 ps in the low- α mode of BESSY. With increasing amplitude of the applied magnetic AC field the particle is driven from an initial symmetric Landau flux-closure state into an asymmetric state and finally into a single-domain state magnetized perpendicular to the applied field H AC . The electromagnetic microwave field thus can induces a net magn…

PermalloyPhysicsCondensed matter physicsbusiness.industrySurfaces and InterfacesCondensed Matter PhysicsSynchrotronSurfaces Coatings and Filmslaw.inventionPhotoemission electron microscopyMagnetizationAmplitudeOpticslawMaterials ChemistryPerpendicularThin filmbusinessMicrowaveSurface Science
researchProduct

Quantitative measurements of magnetic stray field dynamics of Permalloy particles in a photoemission electron microscopy

2010

By example of a Permalloy particle (40 × 40 μm(2) size, 30 nm thickness) we demonstrate a procedure to quantitatively investigate the dynamics of magnetic stray fields during ultrafast magnetization reversal. The measurements have been performed in a time-resolving photoemission electron microscope using the X-ray magnetic circular dichroism. In the particle under investigation, we have observed a flux-closure-dominated magnetic ground structure, minimizing the magnetic stray field outside the sample. A fast magnetic field pulse introduced changes in the micromagnetic structure accompanied with an incomplete flux closure. As a result, stray fields arise along the edges of domains, which cau…

PermalloyPhysicsPhotoemission electron microscopyHistologyDomain wall (magnetism)Condensed matter physicsMagnetic circular dichroismDemagnetizing fieldParticleUltrashort pulsePathology and Forensic MedicineMagnetic fieldJournal of Microscopy
researchProduct

Verwey-type transition in EuNiP

2006

High temperature 151Eu Mossbauer measurements provide proof for inhomogeneous mixed-valent behaviour in EuNiP. We observed that EuNiP undergoes a Verwey-type charge delocalisation transition when heated above 470 K prior to the structural γ-β phase transition at T ≈ 510 K. This finding confirms the results of photoemission spectroscopy in the isostructural compound EuPdP and of TB-LMTO-ASA band structure calculations. We discuss the role of a van Hove singularity associated with a high density of 4f states close to the Fermi energy in inhomogeneous mixed europium valency, and the microscopic mechanism of γ-β phase transition in compounds analogous to EuNiP.

Phase transitionMaterials sciencechemistryCondensed matter physicsPhotoemission spectroscopyVan Hove singularityValencyGeneral Physics and Astronomychemistry.chemical_elementFermi energyIsostructuralEuropiumElectronic band structureEurophysics Letters (EPL)
researchProduct

Direct Measurement of Electron-Phonon Coupling with Time-Resolved ARPES

2020

Time- and angular- resolved photoelectron spectroscopy is a powerful technique to measure electron dynamics in solids. Recent advances in this technique have facilitated band and energy resolved observations of the effect that excited phonons, have on the electronic structure. Here, we show with the help of ab initio simulations that the Fourier analysis of the time-resolved measurements of solids with excited phonon modes enables the determination of the band- and mode-resolved electron-phonon coupling directly from the experimental data without any additional input from theory. Such an observation is not restricted to regions of strong electron-phonon coupling and does not require strongl…

PhononAb initioFOS: Physical sciencesGeneral Physics and AstronomyAngle-resolved photoemission spectroscopyElectronic structure01 natural sciencesSettore FIS/03 - Fisica Della MateriaCondensed Matter::Materials Sciencesymbols.namesakeX-ray photoelectron spectroscopyCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsPhysicsCouplingCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)TR-ARPESFourier analysisExcited statesymbolsCondensed Matter::Strongly Correlated Electronselectron-phonon couplingAtomic physicsPhysical Review Letters
researchProduct