Search results for "physics.chem-ph"
showing 10 items of 359 documents
Thermal effects during adsorption of n-butane on a slilicalite-1 membrane. A non-equilibrium molecular dynamics study
2007
Abstract Non-equilibrium molecular dynamic (NEMD) simulations have been used to study the kinetics of adsorption of n-butane molecules in a silicalite membrane. We have chosen this simple well-known process to demonstrate that the process is characterized by two stages, both non-isothermal. In the first stage the large chemical driving force leads to a rapid uptake of n-butane in all the membrane and a simultaneous increase in the membrane temperature, explained by the large enthalpy of adsorption, Δ H = − 61.6 kJ / mol butane. A diffusion coefficient for transport across the external surface layer is calculated from the relaxation time; a value of 3.4 × 10 −9 m 2 / s is found. During the a…
Thermal Diffusion and Partial Molar Enthalpy Variations of n-Butane in Silicalite-1
2008
International audience; We report for the first time the heat of transfer and the Soret coefficient for n-butane in silicalite-1. The heat of transfer was typically 10 kJ/mol. The Soret coefficient was typically 0.006 K−1 at 360 K. Both varied with the temperature and the concentration. The thermal conductivity of the crystal with butane adsorbed was 1.46 ±0.07 W/Km. Literature values of the isosteric enthalpy of adsorption, the concentration at saturation, and the diffusion coefficients were reproduced. Non-equilibrium molecular dynamics simulations were used to find these results, and a modified heat exchange algorithm, Soft-HEX, was developed for the purpose. Enthalpies of butane were al…
Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems.
2015
This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Structure of matrices based on pectin : formulation, characterization, functionality and controlled release during the encapsulation
2016
In this thesis, we studied the interactions between an anionic polysaccharide (pectin) and monovalent cation (Na+) and divalent cations (Ca2+, Zn2+, Ba2+, Mg2+) in dilute regime (c Ca2+ > Zn2+ > Mg2+; this may be related to the affinity between the water molecules from the coordination sphere and the cation. Indeed, the affinity of the cation for water molecules increases in the reverse order: Ba2+ < Ca2+ < Zn2+ < Mg2+. Finally, we have used the three polysaccharides (PGA, LMP and ALMP - amidated low methoxyl pectin) in association with calcium ions to produce microparticles containing rutin to target drug release in the intestine. We have linked the rutin release kinetics to the network st…
The nanoscale structure of the Pt-water double layer under bias revealed
2019
The nanoscopic mass and charge distribution within the double layer at electrified interfaces plays a key role in electrochemical phenomena of huge technological relevance for energy production and conversion. However, in spite of its importance, the nanoscopic structure of the double layer and its response to an applied potential is still almost entirely unknown, even for Pt-water, the most fundamental electrochemical interface. Using a general ab initio methodology which advances previous models towards a dynamic and more realistic description of an electrode/electrolyte interface, we simulate for the first time the nanoscopic structure of the Pt-water double layer and its response to an …
Non-Monotonic Concentration Dependence of the Electro-Phoretic Mobility of Charged Spheres in Realistic Salt Free Suspensions
2020
Using super-heterodyne Doppler velocimetry with multiple scattering correction, we extend the opti-cally accessible range of concentrations in experiments on colloidal electro-kinetics. We here meas-ured the electro-phoretic mobility and the DC conductivity of aqueous charged sphere suspensions covering about three orders of magnitude in particle concentrations and transmissions as low as 40%. The extended concentration range for the first time allows the demonstration of a non-monotonic con-centration dependence of the mobility for a single particle species. Our observations reconcile previ-ous experimental observations made on other species over restricted concentration ranges. We com-par…
C-S-H/solution interface: Experimental and Monte Carlo studies
2010
International audience; The surface charge density of C-S-H particles appears to be one of the key parameters for predicting the cohesion strength, understanding the ion retention, the pollutant leakage, and admixture adsorption in hydrated cement pastes. This paper presents a Monte Carlo simulation of the surface-ions interactions that permits the prediction of surface charge density (σ), electrokinetic potential (ζ) and ions adsorption of mineral surfaces in equilibrium with a given electrolyte solution. Simulated results are compared to experimental data obtained by titration, electrokinetic potential measurements and ions uptake in the case of C-S-H suspensions. An excellent agreement i…
Effect of coatings on long term behaviour of a commercial stainless steel for solid oxide electrolyser cell interconnect application in H2 /H2O atmos…
2014
Abstract K41X (AISI 441) stainless steel evidenced a high electrical conductivity after 3000 h ageing in H 2 /H 2 O side when used as interconnect for solid oxide electrolyser cells (SOEC) working at 800 °C. Perovskite (La 1 − x Sr x MnO 3 − δ ) and spinel (Co 3 O 4 ) oxides coatings were applied on the surface of the ferritic steel for ageing at 800 °C for 3000 h. Both coatings improved the behaviour of the steel and give interesting opportunities to use the K41X steel as interconnect for hydrogen production via high temperature steam electrolysis. Co 3 O 4 reduced into Co leading to a very good Area Specific Resistance (ASR) parameter, 0.038 Ω cm 2 . Despite a good ASR (0.06 Ω cm 2 ), La …
Ettringite surface chemistry: Interplay of electrostatic and ion specificity
2011
International audience; This paper presents a detailed experimental study combined with Monte Carlo (MC) simulations within the primitive model of the physical chemistry at the ettringite-water interface over a wide range of pH and bulk conditions for which ettringite exists thanks to its solubility in aqueous solutions. Ettringite, which is an important phase in hydrated cement-based systems, bears a permanent and positive structural charge. In contrast with previous studies, electrokinetic measurements together with the careful chemical analysis of the equilibrium solutions of the dispersions have brought strong support to designate sulfate as being the ion determining the potential. Simu…
Pressure Impact on the Stability and Distortion of the Crystal Structure of CeScO3
2017
[EN] The effects of high pressure on the crystal structure of orthorhombic (Pnma) perovskite-type cerium scandate were studied in situ under high pressure by means of synchrotron X-ray powder diffraction, using a diamond-anvil cell. We found that the perovskite-type crystal structure remains stable up to 40 GPa, the highest pressure reached in the experiments. The evolution of unit-cell parameters with pressure indicated an anisotropic compression. The room-temperature pressure¿volume equation of state (EOS) obtained from the experiments indicated the EOS parameters V0 = 262.5(3) Å3 , B0 = 165(7) GPa, and B0¿ = 6.3(5). From the evolution of microscopic structural parameters like bond distan…