Search results for "physics.comp-ph"

showing 10 items of 115 documents

Floquet engineering the band structure of materials with optimal control theory

2022

We demonstrate that the electronic structure of a material can be deformed into Floquet pseudo-bands with arbitrarily tailored shapes. We achieve this goal with a novel combination of quantum optimal control theory and Floquet engineering. The power and versatility of this framework is demonstrated here by utilizing the independent-electron tight-binding description of the $\pi$ electronic system of graphene. We show several prototype examples focusing on the region around the K (Dirac) point of the Brillouin zone: creation of a gap with opposing flat valence and conduction bands, creation of a gap with opposing concave symmetric valence and conduction bands -- which would correspond to a m…

FloquetQuantum optima controlCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesComputational Physics (physics.comp-ph)TopologyPhysics - Computational PhysicsSettore FIS/03 - Fisica Della Materia
researchProduct

A meshless method for compressible flows with the HLLC Riemann solver

2014

The HLLC Riemann solver, which resolves both the shock waves and contact discontinuities, is popular to the computational fluid dynamics community studying compressible flow problems with mesh methods. Although it was reported to be used in meshless methods, the crucial information and procedure to realise this scheme within the framework of meshless methods were not clarified fully. Moreover, the capability of the meshless HLLC solver to deal with compressible liquid flows is not completely clear yet as very few related studies have been reported. Therefore, a comprehensive investigation of a dimensional non-split HLLC Riemann solver for the least-square meshless method is carried out in t…

Fluid Dynamics (physics.flu-dyn)FOS: Physical sciencesPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)Physics - Computational Physics
researchProduct

Speeding up a few orders of magnitude the Jacobi method: high order Chebyshev-Jacobi over GPUs

2017

In this technical note we show how to reach a remarkable speed up when solving elliptic partial differential equations with finite differences thanks to the joint use of the Chebyshev-Jacobi method with high order discretizations and its parallel implementation over GPUs.

High Energy Astrophysical Phenomena (astro-ph.HE)ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMathematicsofComputing_NUMERICALANALYSISFOS: MathematicsFOS: Physical sciencesMathematics - Numerical AnalysisNumerical Analysis (math.NA)Computational Physics (physics.comp-ph)Astrophysics - High Energy Astrophysical PhenomenaPhysics - Computational Physics
researchProduct

Computational general relativistic force-free electrodynamics

2021

Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe's most extreme flows of energy. The discretization of Maxwell's equations - needed to make highly magnetized (astro)physical plasma amenable to its numerical modeling - introduces numerical diffusion. It acts as a source of dissipation independent of the system's physical constituents. Understanding the numerical diffusion of scientific codes is the key to classify their reliability. It gives specific limits in which the results of numerical experiments are physical. We aim at quantifying and characterizing the numerical diffusion propert…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsDiscretizationWaves in plasmasFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)PlasmaComputational Physics (physics.comp-ph)Numerical diffusionDissipation01 natural sciencesMagnetic fieldCurrent sheetSpace and Planetary ScienceQuantum electrodynamics0103 physical sciencesAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics - Computational Physics010303 astronomy & astrophysicsAstronomy & Astrophysics
researchProduct

Computational general relativistic force-free electrodynamics

2020

General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole shadows from the galactic center and the M87 galaxy provide a first direct glimpse into the physics of accretion flows in the most extreme environments of the universe. The efficient extraction of energy in the form of collimated outflows or jets from a rotating BH is directly linked to the topology of the surrounding magnetic field. We aim at providing a tool to numerically model the dynamics of such fields in magnetospheres around compact objects, such as black holes an…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsInertial frame of referenceActive galactic nucleus010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaGalactic CenterFOS: Physical sciencesSpherical coordinate systemAstronomy and AstrophysicsComputational Physics (physics.comp-ph)Magnetar01 natural sciencesGalaxyBlack holeNeutron starSpace and Planetary ScienceQuantum electrodynamics0103 physical sciencesAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics - Computational Physics010303 astronomy & astrophysicsAstronomy & Astrophysics
researchProduct

Wannier90 as a community code: new features and applications

2019

Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, s…

Interface (Java)02 engineering and technologysemiconductors01 natural sciencesGeneral Materials Sciencefieldslocal orbitalCondensed Matter - Materials ScienceUnit testingComputer programBasis (linear algebra)electronstooldynamicsComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologyCondensed Matter Physicsspin polarizationreal-space methods[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyPhysics - Computational PhysicspseudopotentialsconstructionMaterials sciencelocal orbitalsFluids & Plasmasreal-space method0204 Condensed Matter PhysicsFOS: Physical sciencesComputational sciencecrystalSet (abstract data type)band structure interpolation0103 physical sciencesddc:530Wannier function010306 general physics0912 Materials Engineeringdensity-functional theoryWannier orbitalWannier function1007 Nanotechnologybusiness.industrywannier orbitalsMaterials Science (cond-mat.mtrl-sci)Usabilitywannier functionsWannier functions; band structure interpolation; local orbitals; real-space methods; electronic structure; Wannier orbitals; density-functional theoryelectronic structureAutomationtotal-energy calculationsbusiness
researchProduct

A numerical recipe for the computation of stationary stochastic processes' autocorrelation function

2023

Many natural phenomena exhibit a stochastic nature that one attempts at modeling by using stochastic processes of different types. In this context, often one is interested in investigating the memory properties of the natural phenomenon at hand. This is usually accomplished by computing the autocorrelation function of the numerical series describing the considered phenomenon. Often, especially when considering real world data, the autocorrelation function must be computed starting from a single numerical series: i.e. with a time-average approach. Hereafter, we will propose a novel way of evaluating the time-average autocorrelation function, based on the preliminary evaluation of the quantit…

Langevin equationGeneral MathematicsApplied MathematicsGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsComputational Physics (physics.comp-ph)Stochastic processePhysics - Computational Physicslong-range correlationSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Density functional theory calculations on magnetic properties of actinide compounds

2010

We have performed a detailed analysis of the magnetic (collinear and noncollinear) order and atomic and the electron structures of UO2, PuO2 and UN on the basis of density functional theory with the Hubbard electron correlation correction (DFT+U). We have shown that the 3-k magnetic structure of UO2 is the lowest in energy for the Hubbard parameter value of U=4.6 eV (and J=0.5 eV) consistent with experiments when Dudarev's formalism is used. In contrast to UO2, UN and PuO2 show no trend for a distortion towards rhombohedral structure and, thus, no complex 3-k magnetic structure is to be anticipated in these materials.

Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesComputational Physics (physics.comp-ph)
researchProduct

Femtosecond laser pulse shaping for enhanced ionization

2009

El pdf del artículo es la versión post-print: arXiv:0906.1938v1

Materials scienceFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesFluence010305 fluids & plasmaslaw.inventionSchrödinger equationsymbols.namesakelawIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics - Atomic and Molecular ClustersPhysics::Atomic PhysicsIrradiation010306 general physicsRange (particle radiation)Computational Physics (physics.comp-ph)LaserPulse (physics)FemtosecondsymbolsAtomic physicsAtomic and Molecular Clusters (physics.atm-clus)Physics - Computational PhysicsEPL (Europhysics Letters)
researchProduct

Modeling epitaxial film growth of C$_{60}$ revisited

2020

Epitaxial films evolve on time and length scales that are inaccessible to atomistic computer simulation methods like molecular dynamics (MD). To numerically predict properties for such systems, a common strategy is to employ kinetic Monte Carlo simulations, for which one needs to know the transition rates of the involved elementary steps. The main challenge is thus to formulate a consistent model for the set of transition rates and to determine its parameters. Here, we revisit a well-studied model system, the epitaxial film growth of the fullerene ${\mathrm{C}}_{60}$ on an ordered ${\mathrm{C}}_{60}$ substrate (111). We implement a systematic multiscale approach in which we determine transi…

Materials scienceFullereneFOS: Physical sciences02 engineering and technologySubstrate (electronics)01 natural sciencessymbols.namesakeMolecular dynamicsCondensed Matter::Materials Science0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Kinetic Monte Carlo010306 general physicsArrhenius equationCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)Detailed balanceComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologysymbolsSubatomic particle0210 nano-technologyPhysics - Computational PhysicsEnergy (signal processing)
researchProduct